首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the synthesis of ribosomal proteins encoded by the S10 operon, an eleven gene operon from the str-spc region of the E. coli chromosome, using a λfus3 DNA-directed, in vitro protein synthesizing system. Addition of ribosomal protein L4 (1 μM) to in vitro protein synthesis reactions caused selective inhibition of synthesis of the promoter-proximal proteins of the S10 operon, S10, L3, L4, L23 and possibly L2. Proteins of the S10 operon other than L4 did not cause selective inhibition of protein synthesis. Autoregulatory ribosomal proteins previously identified from other operons, L1, S4 and S8, did not inhibit protein synthesis from the S10 operon; nor did L4 cause significant inhibition of protein synthesis from operons other than the S10 operon. As with L1, S4 and S8, L4 inhibits gene expression at the level of translation.  相似文献   

2.
To understand the role of eicosanoids in angiogenesis, we have studied the effect of lipoxygenase metabolites of arachidonic acid on human microvascular endothelial cell (HMVEC) DNA synthesis. Among the various lipoxygenase metabolites of arachidonic acid tested, 5(S)-hydroxyeicosatetraenoic acid (5(S)-HETE) induced DNA synthesis in HMVEC. 5(S)-HETE also stimulated Jak-2, STAT-1, and STAT-3 tyrosine phosphorylation and STAT-3-DNA binding activity. Tyrphostin AG490, a specific inhibitor of Jak-2, significantly reduced tyrosine phosphorylation and DNA binding activity of STAT-3 and DNA synthesis induced by 5(S)-HETE. In addition, 5(S)-HETE stimulated phosphatidylinositol 3-kinase (PI3-kinase) activity and phosphorylation of its downstream targets Akt, p70S6K, and 4E-BP1 and their effector molecules ribosomal protein S6 and eIF4E. LY294002 and rapamycin, potent inhibitors of PI3-kinase and mTOR, respectively, also blocked the DNA synthesis induced by 5(S)-HETE. Interestingly, AG490 attenuated 5(S)-HETE-induced PI3-kinase activity and phosphorylation of Akt, p70S6K, ribosomal protein S6, 4E-BP1, and eIF4E. 5(S)-HETE induced the expression of basic fibroblast growth factor 2 (bFGF-2) in a Jak-2- and PI3-kinase-dependent manner. In addition, a neutralizing anti-bFGF-2 antibody completely blocked 5(S)-HETE-induced DNA synthesis in HMVEC. Together these results suggest that 5(S)-HETE stimulates HMVEC growth via Jak-2- and PI3-kinase-dependent induction of expression of bFGF-2. These findings also reveal a cross-talk between Jak-2 and PI3-kinase in response to 5(S)-HETE in HMVEC.  相似文献   

3.
To understand the mechanisms of prostaglandin F2alpha (PGF2alpha)-induced protein synthesis in vascular smooth muscle cells (VSMC), we have studied its effect on two major signal transduction pathways: mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI3-kinase) and their downstream targets ribosomal protein S6 kinase (p70(S6k)) and eukaryotic initiation factor eIF4E and its regulator 4E-BP1. PGF2alpha induced the activities of extracellular signal-regulated kinase 2 (ERK2) and Jun N-terminal kinase 1 (JNK1) groups of mitogen-activated protein kinases, PI3-kinase, and p70(S6k) in a time-dependent manner in growth-arrested VSMC. PGF2alpha also induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and basic fibroblast growth factor-2 (bFGF-2) expression in VSMC. Whereas inhibition of PI3-kinase by wortmannin completely blocked the p70(S6k) activation, it only partially decreased the ERK2 activity, and had no significant effect on global protein synthesis and bFGF-2 expression induced by PGF2alpha. Rapamycin, a potent inhibitor of p70(S6k), also failed to prevent PGF2alpha-induced global protein synthesis and bFGF-2 expression, although it partially decreased ERK2 activity. In contrast, inhibition of ERK2 activity by PD 098059 led to a significant loss of PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation, global protein synthesis, and bFGF-2 expression. PGF2alpha-induced phosphorylation of eIF4E and 4E-BP1 was also found to be sensitive to inhibition by both wortmannin and rapamycin. These findings demonstrate that 1) PI3-kinase-dependent and independent mechanisms appear to be involved in PGF2alpha-induced activation of ERK2; 2) PGF2alpha-induced eIF4E and 4E-BP1 phosphorylation appear to be mediated by both ERK-dependent and PI3-kinase-dependent rapamycin-sensitive mechanisms; and 3) ERK-dependent eIF4E phosphorylation but not PI3-kinase-dependent p70(S6k) activation correlates with PGF2alpha-induced global protein synthesis and bFGF-2 expression in VSMC.  相似文献   

4.
Nuclei were isolated from synchronized plasmodia of a true slime mold, Physarum polycephalum, in S-phase, and DNA synthesis in the nuclei was studied in vitro. The nuclei catalyzed DNA synthesis at the rate of 0.7 ng DNA/1.0 X 10(6) nuclei/30 min at 25 degrees C, which was 5 times higher than that catalyzed in G2-phase nuclei. The DNA synthesis required Mg2+, four kinds of deoxyribonucleoside 5'-triphosphates and ATP, suggesting that the mode of synthesis is a replicative-type, but not a repair-one. Sedimentation analysis of the DNA products revealed that the nuclei produced 2-4S DNA fragments mainly during a 30-sec pulse incubation, and 2-4S, 5-12S and longer fragments during a 15-min incubation. The pulse- and chase-labeling experiments showed that the 2-4S fragments shifted discontinuously to longer fragments. These results indicate that the nuclei catalyze the formation of 2-4S Okazaki fragments first and then their subsequent ligation. Eighty % and 96% of the DNA synthesis was inhibited by 200 micrograms/ml aphidicolin and 40 mM N-ethylmaleimide, respectively, but 80% of the activity was resistant to 100 microM 2',3'-dideoxythymidine 5'-triphosphate. These results suggest that the DNA synthesis is catalyzed by the alpha-type DNA polymerase of Physarum polycephalum.  相似文献   

5.
Noncoordinate control of RNA synthesis in eucaryotic cells   总被引:3,自引:0,他引:3  
M V Willis  J B Baseman  H Amos 《Cell》1974,3(2):179-184
Inhibition of protein synthesis in confluent monolayers of chick fibroblasts stimulates selectively the synthesis of 4S RNA, resulting in a net accumulation of 4S RNA in the inhibited cells. Under these conditions, inhibition of ribosomal RNA synthesis and processing occurs, as does a decrease in soluble uridine phosphate concentrations; increased pools of certain amino acids are also apparent. Recovery of cells from inhibition is accompanied by a rapidly increasing rate of protein synthesis that lasts for several hours. The small molecular weight RNA synthesized during inhibition of protein synthesis appears properly methylated, and in the presence of cycloheximide and actinomycin D shows a precursor-product conversion. Radiolabeled RNA synthesized during inhibition of protein synthesis is stable following the recovery of cells from inhibition. Stimulation of uridine incorporation into 4S RNA during arrest of protein synthesis is also demonstrated in high-density cultures of L- and Hep-2 cells, suggesting that this non-coordinate stimulation of 4S RNA may be a general property of eucaryotic cells.  相似文献   

6.
Isolated HeLa cell nuclei are capable of synthesizing 5S and pre-4S RNA. The labeling of these low molecular weight species has been compared with the labeling of nucleolar RNA and nuclear heterogeneous RNA. The 5S and pre-4S RNA molecules made in vitro were identified by their mobility on SDS acrylamide gels and by the sensitivity of pre-4S RNA to enzymes which cleave it in vitro to 4S RNA. Their mobilities and cleavage properties are similar to the RNA made in vivo. Unlike the nuclear heterogeneous RNA, the synthesis of the two small molecular weight RNAs is resistant to α-amanitin.A large proportion of 4S RNA labeled in vitro appears to be formed de novo. The ratio of the terminal uridine to the internal uridine 3′-monophosphate remains constant with time, even though there is linear incorporation into the pre-4S RNA in the isolated nuclei.Production of the nucleolar RNA and pre-4S RNA has been compared in the presence of various ions. The pre-4S RNA synthesis has a sharper maximum for (NH4)SO4 and MgCl2 than does the synthesis of nucleolar RNA. The in vitro synthesis of pre-4S is more sensitive to ellipticine and pCMB than the production of nucleolar RNA. These differences between the production of pre-4S RNA and nucleolar RNA are discussed with respect to in vitro reinitiation and the possibility that different polymerases are involved in their synthesis.  相似文献   

7.
H2S has been often invoked as the initial source of sulfur in prebiotic evolution, and several sulfur-containing compounds have been proposed as intermediates in the primordial synthesis of biologically relevant sulfur-containing chemicals. The possibilities of synthesis of the principal key intermediates by glow discharges in CH4-N2-H2S mixtures is studied. It is shown that synthesis of important intermediates such as HCN, (CN)2, CHCCN and CH3SH is possible from such mixtures if the amount of H2S is not more than 10%. For higher amounts of H2S, the syntheses are strongly inhibited.  相似文献   

8.
The infection of permissive monkey kidney cells (CV-1) with simian virus 40 induces G1 growth-arrested cells into the cell cycle. After completion of the first S phase and movement into G2, mitosis was blocked and the cells entered another DNA synthesis cycle (second S phase). Growth-arrested CV-1 cells replicated significant amounts of viral DNA in the G2 phase with the majority of synthesis occurring during the second S phase. When mimosine-blocked (G1/S) infected cells were released into the cell cycle, a major portion of the viral DNA was detected in G2 with the largest accumulation in the second S phase. The total DNA produced per infected cell was 10-12C with approximately 0.5-2C of viral DNA replicated per cell. Therefore the majority of the DNA per cell was cellular, 4C from the first S phase and approximately 4-6C from the second cellular synthesis phase.  相似文献   

9.
Insulin and TNF-alpha exert opposing effects on skeletal muscle protein synthesis that are mediated in part by the rapamycin-sensitive mammalian target of rapamycin (mTOR) pathway and the PD-98059-sensitive, extracellular signal-regulated kinase (ERK)1/2 pathway. The present study examined the separate and combined effects of insulin (INS), TNF, PD-98059, or dnMEK1 adenovirus on the translational control of protein synthesis in C(2)C(12) myotubes. Cultures were treated with INS, TNF, PD-98059, dnMEK1, or a combination of INS + TNF with PD-98059 or dnMEK1. INS stimulated protein synthesis, enhanced eIF4E.eIF4G association, and eIF4G phosphorylation and repressed eIF4E.4E-BP1 association vs. control. INS also promoted phosphorylation of ERK1/2, S6K1, and 4E-BP1 and dephosphorylation of eIF4E. TNF alone did not have an effect on protein synthesis (vs. control), eIF4E.eIF4G association, or the phosphorylation of eIF4G, S6K1, or 4E-BP1, although it transiently increased ERK1/2 and eIF4E phosphorylation. When myotubes were treated with TNF + INS, the cytokine blocked the insulin-induced stimulation of protein synthesis. This appeared to be due to an attenuation of insulin-stimulated eIF4E.eIF4G association, because other stimulatory effects of INS, e.g., phosphorylation of ERK1/2, 4E-BP1, S6K1, eIF4G, and eIF4E and eIF4E.4E-BP1 association, were unaffected. Finally, treatment of myotubes with PD-98059 or dnMEK1 adenovirus before TNF + INS addition resulted in a derepression of protein synthesis and the association of eIF4G with eIF4E. These findings suggest that TNF abrogates insulin-induced stimulation of protein synthesis in myotubes through a decrease in eIF4F complex assembly independently of S6K1 and 4E-BP1 signaling and dependently on a MEK1-sensitive signaling pathway.  相似文献   

10.
The first synthesis of one of the 4 possible stereoisomers of 3,4-dihydroxy-L-glutamic acid ((3S,4S)-DHGA 3), a natural product of unknown configuration, is described. The synthesis is based on the Lewis acid catalyzed reaction of benzyl alcohol with a D-ribose-derived 2,3-aziridino-gamma-lactone 4-benzyl carboxylate (6). Preliminary pharmacological studies showed that (3S,4S)-3 is an agonist of metabotropic glutamate receptors of type 1 (mGluR1) and a weak antagonist of mGluR4 but has no discernible activity with respect to mGluR2. This activity profile can be rationalized by fitting extended conformations of (3S,4S)-3 in proposed models of each of these receptor subtypes.  相似文献   

11.
E Smolarz  P Gr?bner  P Loidl 《Biochemistry》1988,27(11):4142-4147
High mobility group like (HMG-like) nuclear proteins were isolated from plasmodia of the lower eucaryote Physarum polycephalum and characterized by different types of polyacrylamide gel electrophoresis. The synthesis of these proteins was measured during the naturally synchronous cell cycle of Physarum. The four HMG-like proteins (AS1-4) exhibit a pronounced cell cycle dependent pattern of synthesis: AS1 and AS4 have a clear maximum of synthesis in mid S phase with a basal synthesis during the entire G2 period. In contrast, AS2 and AS3 have little synthesis in S phase but a broad maximum in mid G2 period. The four HMG-like proteins have a very low synthesis in early S phase and late G2 period. In addition, other non-histone proteins, which are coextracted with the HMG proteins, exhibit distinct periodic synthesis patterns. A novel non-histone protein, which is the most abundant protein species in 0.35 M NaCl extracts, was detected. It exhibits a high rate of synthesis around the time of mitosis. In general, the results indicate that, in contrast to the main cytoplasmic proteins, most nuclear proteins are phase-specific with respect to their synthesis in the cell cycle.  相似文献   

12.
(2S,4S)-Methyl-N-tert-butoxycarbonyl-4-monofluoromethylpyroglutamate 6 was synthesized via a key dehydrofluorination followed by hydrogenation. Compound 6 was converted to (5S,3S)-N-benzyloxycarbonyl-5-tert-butyldimethylsilyloxymethyl-3-monofluoromethyl-2-pyrrolidone 12 over four steps in 62% yield, which was used as a precursor for the synthesis of 2',3'-dideoxy-2'-monofluoromethyl azanucleosides 17-18.  相似文献   

13.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.  相似文献   

14.
To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.  相似文献   

15.
Previous studies have shown that intravenous infusion of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates and that insulin and amino acids act independently to produce this effect. The goal of the present study was to delineate the regulatory roles of insulin and amino acids on muscle protein synthesis in neonates by examining translational control mechanisms, specifically the eukaryotic translation initiation factors (eIFs), which enable coupling of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. Insulin secretion was blocked by somatostatin in fasted 7-day-old pigs (n = 8-12/group), insulin was infused to achieve plasma levels of approximately 0, 2, 6, and 30 microU/ml, and amino acids were clamped at fasting or fed levels or, at the high insulin dose, below fasting. Both insulin and amino acids increased the phosphorylation of ribosomal protein S6 kinase (S6K1) and the eIF4E-binding protein (4E-BP1), decreased the binding of 4E-BP1 to eIF4E, increased eIF4E binding to eIF4G, and increased fractional protein synthesis rates but did not affect eIF2B activity. In the absence of insulin, amino acids had no effect on these translation initiation factors but increased the protein synthesis rates. Raising insulin from below fasting to fasting levels generally did not alter translation initiation factor activity but raised protein synthesis rates. The phosphorylation of S6K1 and 4E-BP1 and the amount of 4E-BP1 bound to eIF4E and eIF4E bound to eIF4G were correlated with insulin level, amino acid level, and protein synthesis rate. Thus insulin and amino acids regulate muscle protein synthesis in skeletal muscle of neonates by modulating the availability of eIF4E for 48S ribosomal complex assembly, although other processes also must be involved.  相似文献   

16.
Raptor-rictor axis in TGFbeta-induced protein synthesis   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGFbeta) stimulates pathological renal cell hypertrophy for which increased protein synthesis is critical. The mechanism of TGFbeta-induced protein synthesis is not known, but PI 3 kinase-dependent Akt kinase activity is necessary. We investigated the contribution of downstream effectors of Akt in TGFbeta-stimulated protein synthesis. TGFbeta increased inactivating phosphorylation of Akt substrate tuberin in a PI 3 kinase/Akt dependent manner, resulting in activation of mTOR kinase. mTOR activity increased phosphorylation of S6 kinase and the translation repressor 4EBP-1, which were sensitive to inhibition of both PI 3 kinase and Akt. mTOR inhibitor rapamycin and a dominant negative mutant of mTOR suppressed TGFbeta-induced phosphorylation of S6 kinase and 4EBP-1. PI 3 kinase/Akt and mTOR regulated dissociation of 4EBP-1 from eIF4E to make the latter available for binding to eIF4G. mTOR and 4EBP-1 modulated TGFbeta-induced protein synthesis. mTOR is present in two multi protein complexes, mTORC1 and mTORC2. Raptor and rictor are part of mTORC1 and mTORC2, respectively. shRNA-mediated downregulation of raptor inhibited TGFbeta-stimulated mTOR kinase activity, resulting in inhibition of phosphorylation of S6 kinase and 4EBP-1. Raptor shRNA also prevented protein synthesis in response to TGFbeta. Downregulation of rictor inhibited serine 473 phosphorylation of Akt without any effect on phosphorylation of its substrate, tuberin. Furthermore, rictor shRNA increased phosphorylation of S6 kinase and 4EBP-1 in TGFbeta-independent manner, resulting in increased protein synthesis. Thus mTORC1 function is essential for TGFbeta-induced protein synthesis. Our data also provide novel evidence that rictor negatively regulates TORC1 activity to control basal protein synthesis, thus conferring tight control on cellular hypertrophy.  相似文献   

17.
Various fractions of the immune nuclear RNA were isolated from spleens of phage T2 immunized rats. The fractions were compared for their ability to induce anti-phage T2 antibody synthesis in transplantable lymphosarcoma cells. The most active proved to be the nuclear sap RNA and its subfraction with sedimentation constant of 10 S. The 4S and 26S subfractions RNA were less stable and in some experiments failed to induce antibody synthesis.  相似文献   

18.
The purpose of the present study was to examine potential mechanisms for the known inhibitory effect of acute alcohol exposure on myocardial protein synthesis. Rats were injected intraperitoneally with either ethanol (75 mmol/kg) or saline, and protein synthesis was measured in vivo 2.5 h thereafter by use of the flooding-dose L-[(3)H]phenylalanine technique. Rates of myocardial protein synthesis and translational efficiency in alcohol-treated rats were decreased compared with control values. Free (nonpolysome bound) 40S and 60S ribosomal subunits were increased 50% after alcohol treatment, indicating an impaired peptide-chain initiation. To identify mechanisms responsible for this impairment, several eukaryotic initiation factors (eIF) were analyzed. Acute alcohol intoxication did not significantly alter the myocardial content of eIF2 alpha or eIF2B epsilon, the extent of eIF2 alpha phosphorylation, or the activity of eIF2B. Acute alcohol exposure increased the binding of 4E-binding protein 1 (4E-BP1) to eIF4E (55%), diminished the amount of eIF4E bound to eIF4G (70%), reduced the amount of 4E-BP1 in the phosphorylated gamma-form (40%), and decreased the phosphorylation of p70S6 kinase and the ribosomal protein S6. There was no significant difference in either the plasma insulin-like growth factor (IGF) I concentration (total or free) or expression of IGF-I or IGF-II mRNA in heart between the two groups. These data suggest that the acute alcohol-induced impairment in myocardial protein synthesis results, in part, from an inhibition in peptide-chain initiation, which is associated with marked changes in eIF4E availability and p70S6 kinase phosphorylation but is independent of changes in the eIF2/2B system and IGFs.  相似文献   

19.
RNA isolated from the spleens of intact rats and from rats with immunized sheep red cells was fractionated through three steps: 1 - extraction from phenol nuclei at 50-55 degrees and 65-75 degrees C, 2 - calcium-phosphate chromatography, 3 - agar electrophoresis. Eight agar fractions were obtained of the spleens of immunized rats, an increased RNA content was manifested in at least three agar fractions: the first (4 S), the third (21 S) and the eighth (26 S) ones. The first and the eighth immune RNA fractions, as it was shown earlier, induce the synthesis of antibodies in the rat transplantable lymphosarcoma cell. The first agar fraction of nuclear RNA from the spleens of immunized and intact rats were additionally separated using PAAG electrophoresis. The 4 S agar RNA fraction appears to be rather heterogeneous. It contains 4 S, 4.5 S, 5 S, 5.8 S, U1, U2 and 8 SII fractions, which are low-molecular nuclear RNAs, the 4 S subfraction prevailing. It is suggested that the 4 S PAAG subfraction is most active in the synthesis of antibodies induced by the heterogeneous agar 4 S RNA.  相似文献   

20.
We have described the synthesis of (+)-(2R,3S,4R)-2,3,4-trihydroxycyclohexanone by the reduction of a keto-conduritol derivative, the latter being prepared in five steps from (-)-(2S,3R,4S,5S)-2,3,4-tribenzyloxy-5-hydroxycyclohexanone, which is in turn readily synthesized from D-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号