首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of hepatic S9 mixes derived from different rodent species (rat, mouse, Syrian and Chinese hamster) to activate the mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) was investigated using Salmonella typhimurium strain TA98. In general, the mutagenicity of IQ and MeIQ was greatest in the presence of S9 fractions from Swiss albino mice and least from fractions derived from Chinese hamsters. However, treatment of rats or hamsters with Aroclor 1254 had little or no effect on the activation of IQ or MeIQ to mutagens.  相似文献   

2.
We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of 6 heterocyclic amines, Trp-P-1 (25 mg/kg), Trp-P-2 (13 mg/kg), IQ (13 mg/kg), MeIQ (13 mg/kg), MeIQx (13 mg/kg) and PhIP (40 mg/kg), in mouse liver, lung, kidney, brain, spleen, bone marrow and stomach mucosa. Mice were sacrificed 1, 3, and 24 h after intraperitoneal injection. Trp-P-2, IQ, MeIQ, and MeIQx yielded statistically significant DNA damage in the stomach, liver, kidney, lung and brain; Trp-P-1 in the stomach, liver and lung; and PhIP in the liver, kidney and brain. None of the heterocyclic amines induced DNA damage in the spleen and bone marrow. Our results suggest that the alkaline SCG assay applied to multiple organs is a good way to detect organ-specific genotoxicity of heterocyclic amines in mammals.  相似文献   

3.
The effects of post-treatment with heterocyclic amines and beta-carbolines on the induction of chromosome aberrations were studied in Chinese hamster CHO K-1 cells and SV40-transformed excision repair-deficient human XP2OSSV cells. The number of chromosome aberrations induced by UV and MMC were increased by post-treatment with Trp-P-1 and Trp-P-2, in both the presence and the absence of S9 mix. A alpha C, MeA alpha C, Glu-P-1, Glu-P-2, IQ, MeIQ, harman and harmine increased chromosome aberrations only in the presence of S9 mix. Glu-P-2, IQ, MeIQ, harman, and harmine did not induce chromosome aberrations by themselves at the concentrations used in this study. Trp-P-1, Trp-P-2, A alpha C, MeA alpha C and Glu-P-1 were weak clastogens by themselves, but at much higher concentrations than those at which they increased the induction of chromosome aberrations in cells pretreated with UV or MMC. Therefore, the increases in chromosome aberrations were not considered to be additive.  相似文献   

4.
The fried food mutagens IQ, MeIQ, Glu-P-1 and Trp-P-2 were treated with nitrite at pH 3.0 for 1 h at 37 degrees C. The resulting reaction mixtures were tested for mutagenicity towards Salmonella typhimurium TA97, TA98, TA100 and TA1535. Glu-P-1 and Trp-P-2 were readily converted to weak or non-mutagenic deaminated compounds, whereas IQ and MeIQ were converted to extremely strong mutagenic derivatives in both the presence and the absence of rat liver S9 mix. The mutagenicity of MeIQ in TA98 was enhanced by nitrite up to 3-fold, while that of nitrosated MeIQ was further enhanced by S9 mix up to 15-fold. The nitrosation products of MeIQ were resolved into 7 bands by TLC on silica gel plate. Bands I, III, V and VI were highly mutagenic to both TA98 and TA100. The experimental results suggest that the non-enzymatic formation of direct-acting mutagens from indirect-acting mutagens such as IQ or MeIQ might be physiologically important, especially with regard to the etiology of human gastrointestinal tract tumors.  相似文献   

5.
Sulforaphane, a constituent of broccoli was investigated for its antimutagenic potential against different classes of cooked food mutagens (heterocyclic amines). These include imidazoazaarenes such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); pyridoindole derivatives such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2); and, dipyridoimidazole derivative such as 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1). Tests were carried out by Ames Salmonella/reversion assay using Salmonella typhimurium TA98 (frame shift mutation sensitive) and TA100 (base pair mutation sensitive) bacterial strains in the presence of Aroclor 1254-induced rat liver S9. Results of these in vitro antimutagenicity studies strongly suggest that sulforaphane is a potent inhibitor of the mutagenicity induced by imidazoazaarenes such as IQ, MeIQ and MeIQx (approximately 60% inhibition) and moderately active against pyridoindole derivatives such as Trp-P-1 and Trp-P-2 (32-48% inhibition), but ineffective against dipyridoimidazole derivative (Glu-P-1) in TA 100.  相似文献   

6.
The antibacterial activities of flavonoids were found by the paper disk method to be enhanced by combining or mixing them. The combinations of quercetin and quercitrin, quercetin and morin, and quercetin and rutin were much more active than either flavonoid alone. Although rutin did not show activity in itself, the antibacterial activities of quercetin and morin were enhanced in the presence of rutin. The antibacterial activities of flavonoids, in combination with morin and rutin, were evaluated, based on the minimum inhibition concentration (MIC) in a liquid culture, by using Salmonella enteritidis and Bacillus cereus as the test bacteria. The activities of galangin, kaempherol, myricetin and fisetin were each enhanced in the presence of rutin when S. enteritidis was used as the test bacterium. The MIC value for kaempherol was markedly decreased by the addition of rutin. Morin inhibited DNA synthesis, and this effect was promoted by rutin at a concentration of 25 microg/ml.  相似文献   

7.
The fermented food, whole meal Natto, viscous polymeric material from Natto, Natto bean, cooked soya bean, and 28 bacterial isolates from Natto were studied for their binding capacity to foodborne mutagenic-carcinogenic heterocyclic amines. The mutagenic heterocyclic amines used were Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido(4,3-b)indole); Trp-P-2 (3-amino-1-methyl-5H-pyrido(4,3-b)indole); Glu-P-1 (2-amino-6-methyldipyrido(1,2-a:3'2'-d)imidazole); PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine); IQ (2-amino-3-methylimidazo(4,5-f)quinoline); MeIQ (2-amino-3,4-dimethylimidazo(4,5-f)quinoxaline); MeIQx (2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline); and MeAalphaC (2-amino-3-methyl-9H-pyrido(2,3)indole). The lyophilized Natto and other fractions of Natto exhibited high binding activity towards Trp-P-1, Trp-P-2, PhIP, and MeAalphaC, while Glu-P-1, IQ, and MeIQ were not effectively bound. The binding capacity of bacterial isolates (Bacillus natto) were isolate-mutagen dependent. Heat treated lyophilized cells, cell wall, and cytoplasmic contents of the bacterial isolate with the highest binding capacity were analyzed for their ability to bind different heterocyclic amines. The results indicate the importance of the cell wall in binding to heterocyclic amines, whereas the cytoplasmic contents were less effective. Heat-treated cells were not much different from that of viable cells in their binding. The impact of different factors, such as pH, incubation time, metal ions, different concentrations of sodium chloride and alcohol, various enzymes, and acetylation of mutagens on binding of Trp-P-1 and IQ, were discussed. The significance of the present results is also discussed from the viewpoint that Natto, a fermented food, is able to scavenge dietary mutagenic heterocyclic amines through binding.  相似文献   

8.
The mutagenic heterocyclic amines Glu-P-2, MeA alpha C and Phe-P-1, which possess a 2-aminopyridine structure in their molecule (non-IQ-type mutagens), were found to be inactivated by nitrite treatment under acidic conditions, as observed previously with Trp-P-1, Trp-P-2, Glu-P-1 and A alpha C. In contrast, MeIQx, 4,8- and 7,8-DiMeIQx, which were originally isolated from fried beef or heated model mixtures of creatinine, amino acids and glucose, and which have a 2-aminoimidazole moiety in their molecules (IQ-type mutagens), were very resistant to nitrite treatment like IQ and MeIQ. Both types of mutagenic heterocyclic amines were completely inactivated by treatment with hypochlorite. This differential inactivation of mutagenic heterocyclic amines by nitrite and hypochlorite was used in determination of the contributions of IQ-type and non-IQ-type mutagens to the total mutagenicities of various pyrolyzed materials. The percentage contributions of IQ-type mutagens to the mutagenicities of broiled sardine, fried beef, broiled horse mackerel, cigarette smoke condensate and albumin tar were 88, 75, 48, 6 and 4, respectively.  相似文献   

9.
Shishu  A.K. Singla  I.P. Kaur 《Phytomedicine》2003,10(6-7):575-582
Dibenzoylmethane (DBM), a structural analogue of curcumin (a bioactive phytochemical present in a widely used spice turmeric) was screened for its inhibitory effect against seven cooked food mutagens (heterocyclic amines): 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1), in both TA98 and TA100 strains of Salmonella typhimurium using Ames Salmonella/reversion assay in the presence of Aroclor1254-induced rat liver S9 homogenate. DBM has been reported to antagonize the mutagenicity of several chemical carcinogens in vitro and has recently been shown to be even more effective than curcumin in suppressing the 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors in rats. But there are no reports regarding its antimutagenic properties against cooked food mutagens. Results of the present investigations clearly indicate that dibenzoylmethane is a very potent antimutagenic agent, that could effectively inhibit mutagenicity induced by all the tested cooked food mutagens in both the frame shift (TA98) as well as the base pair mutation sensitive (TA100) strains of S. typhimurium. These highly potent inhibitory effects of dibenzoylmethane against heterocyclic amines observed in our preliminary investigations strongly warrant further studies of its efficacy as a cancer chemopreventive agent.  相似文献   

10.
Mutagenic activation of the 3 cooked food mutagens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) was compared in liver and lung enzyme preparations from oxen, pigs and rats. Liver preparations from oxen were the most efficient in activating the mutagens, while the rat enzymes were more active than those from pigs. The different cooking mutagens showed different mutagenic potential. MeIQ was the most potent mutagen, followed by IQ and MeIQx in descending order. In oxen, MeIQx was as potent as IQ. The activation with the lung enzymes was 2-3 orders of magnitude lower than with liver. Furthermore, species differences in mutagenic activation with lung enzymes were small compared with liver enzymes. In lung preparations the differences between IQ and MeIQ were small, but in all 3 animal species the mutagenicity of MeIQx was 1 order of magnitude lower than that of the other 2 mutagens.  相似文献   

11.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

12.
Heterocyclic amines (HAs) were determined in several of the most frequently eaten meat dishes in Spain such as fried beef hamburger, fried pork loin, fried chicken breast, fried pork sausages, griddled chicken breast, griddled lamb steak and griddled beef steak. All of the products tested were household cooked. The HAs were analysed in the selected meat dishes using an analytical method based on solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. DMIP, MeIQx, 4,8-DiMeIQx, Norharman, Harman, PhIP, Trp-P-1, AalphaC and MeAalphaC were the amines most frequently found at concentrations of up to 47 ng g(-1) of cooked meat. Glu-P-2, IQ, MeIQ, Glu-P-1, 7,8-DiMeIQx and Trp-P-2 were only found in a few of the meat dishes and their concentrations were lower than 1 ng g(-1) of cooked meat. The highest amounts of HAs, especially PhIP and DMIP, were formed in fried chicken breast and the lowest were formed in fried beef hamburger and in fried pork sausages. Daily intake of HAs in Spain was estimated at 606 ng of mutagenic HAs per capita and day, DMIP and PhIP being the main contributors.  相似文献   

13.
Oxidative modification of low density lipoprotein (LDL) may play an important role in the development of atherosclerosis. Alpha-tocopherol functions as a major antioxidant in human LDL. The present study was to test whether four natural flavonoids (kempferol, morin, myricetin, and quercetin) would protect or regenerate alpha-tocopherol in human LDL. The oxidation of LDL incubated in sodium phosphate buffer (pH 7.4, 10 mM) was initiated by addition of either 5.0 mM CuSO(4) at 37 degrees C or 1.0 mM of 2,2'-azo-bis (2-amidinopropane) dihydrochloride (AAPH) at 40 degrees C. It was found that alpha-tocopherol was completely depleted within 1 hour. Under the same experimental conditions, all four flavonoids demonstrated a dose-dependent protecting activity to alpha-tocopherol in LDL at the concentration ranging from 1 to 20microM. All flavonoids showed a varying protective activity against depletion of alpha-tocopherol in LDL, with kempherol and morin being less effective than myricetin and quercetin. The addition of flavonoids to the incubation mixture after 5 minutes demonstrated a significant regeneration of alpha-tocopherol in human LDL. The protective activity of four flavonoids to LDL is related to the number and location of hydroxyl groups in the B ring as well as the stability in sodium phosphate buffer.  相似文献   

14.
The enhancing effects of 12 kinds of flavonoids on the mutagenicity of 2-acetylaminofluorene (AAF) in Salmonella typhimurium TA98 were investigated. In the mixed applications of AAF (22.4 nmoles/plate) with flavonoids (31.4-45.0 nmoles/plate) in the presence of a mammalian metabolic activation system (S9 mix), morin, galangin, flavonol, kaempferol, quercetin and myricetin enhanced the mutagenicity of AAF by 3.3-10.2-fold. The potency of the mutagenicity enhancing effects increased in the described order. For the mutagenicity-enhancing effects of the flavonoids on AAF, the flavonol structure, including the free 3-hydroxyl group and the 2,3-double bond, were essential. In the quercetin analogues, the 5-hydroxyl group was also essential. Further, the numbers of the hydroxyl groups substituted at the 3', 4' and 5'-positions in the B-ring contributed to an increase of the enhancing effect, whereas the substitution of a hydroxyl group at the 2'-position depressed the potency of the effect.  相似文献   

15.
Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3′,2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.  相似文献   

16.
Mutagenic and carcinogenic heterocyclic amines in Chinese cooked foods   总被引:7,自引:0,他引:7  
Samples of 7 foods commonly eaten in the Northeast of China (i.e. fried and broiled fishes and broiled meat) were tested for mutagenicity on Salmonella typhimurium TA98 with S9 mix. The basic fractions of the samples were mutagenic, inducing 33-2930 revertants/g of cooked food. Fried walleye pollack (a kind of cod fish heated on a stainless steel pan) showed the highest mutagenicity, so attempts were made to isolate mutagens from the basic fraction of this food. The mutagens were purified by treatment with blue cotton and HPLC on a semi-preparative ODS column and analytical cation exchange and ODS columns. 5 mutagens were isolated and identified as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). 1 g of fried fish was estimated to contain 0.16 ng of IQ, 0.03 ng of MeIQ, 6.44 ng of MeIQx, 0.10 ng of 4,8-DiMeIQx and 69.2 ng of PhIP. MeIQx and PhIP accounted for 24% and 4.7%, respectively, of the total mutagenicity. The other 3 heterocyclic amines were each responsible for only 0.3-1.2% of the total mutagenicity.  相似文献   

17.
Mutagens have been found in smoked, dried bonito products, popular items in Japanese foods. The mutagens were isolated by means of blue cotton, an absorbent cotton preparation with covalently bound trisulfo-copper-phthalocyanine residues, and by means of XAD-2 resin. The mutagenicity was positive in Salmonella typhimurium strain TA98 with metabolic activation. The mutagens are produced during the process of smoking-and-drying bonito (a process called baikan). The activity was much higher than that expected from the content of benzo[a]pyrene. In contrast to benzo[a]pyrene, the mutagens were not inhibited by ellagic acid. The mutagenicity was not abolished by treatment with nitrite. Thin-layer and high-performance liquid chromatographic analysis gave two mutagenic fractions, both of which were distinguishable from benzo[a]pyrene and from the pyrolysis products Trp-P-1, Trp-P-2, Glu-P-1, Glu-P-2, A alpha C and MeA alpha C. The major mutagenic component was not chromatographically distinguishable from IQ and MeIQx, and the minor one was very similar to MeIQ. The smoked, dried bonito products contained free fatty acids, which were inhibitory to the mutagenicity of the bonito products.  相似文献   

18.
Flavonols are plant polyphenolic compounds that belong to the class of molecules collectively known as flavonoids. Because of their demonstrated health benefits towards a wide array of human pathological conditions, a great interest has emerged for their biosynthesis from well-characterized microbial hosts. We present the functional expression in Escherichia coli of a plant P450 flavonoid 3', 5'-hydroxylase (F3'5'H) as a fusion protein with a P450 reductase. This expression allowed metabolic engineering of E. coli to produce the flavonol kaempferol and the 3', 4' B-ring hydroxylated flavonol quercetin from the p-coumaric acid precursor by simultaneously co-expressing the fusion protein with 4-coumaroyl:CoA-ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3beta-hydroxylase (FHT) and flavonol synthase (FLS). Biosynthesis of the B-ring tri-hydroxylated flavonol myricetin from the engineered strains was accomplished when flavanones rather than phenylpropanoid acids were used as precursor molecules. Cultivation of the recombinant strains in rich medium increased the synthesis of all flavonoids with the exception of myricetin. The present work opens the possibility of the future production of several other hydroxylated flavonoid molecules in E. coli.  相似文献   

19.
The umu test system is a newly developed method to evaluate genotoxic activities of a wide variety of environmental carcinogens and mutagens (Oda et al., 1985). In the present study, we further examined the abilities of 151 chemicals to induce umu gene expression in Salmonella typhimurium TA1535/pSK1002. Among the chemicals examined, 72 compounds induced umu gene expression, which could be defined on a basis of increased beta-galactosidase activity by 2-fold over the background level. The potent genotoxic compounds without metabolic activation were adriamycin, bleomycin, daunorubicin, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, N-ethyl-N'-nitro-N-nitrosoguanidine, furylfuramide, methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, mitomycin C, 1-nitropyrene and 4-nitroquino-line-1-oxide. In the presence of S9, aflatoxin B1, 2-aminoanthracene, Glu-P-1, IQ, MeIQ, MeIQx, Trp-P-1 and Trp-P-2 also induced umu gene expression markedly. Several chemicals such as 2-acetylaminofluorene, 9-aminoacridine, azobenzene, benzanthracene, benzidine, diethyl nitrosamine, 1-nitronaphthalene, paraquat, potassium dichromate and sodium nitrite were weakly genotoxic and the induction by these compounds could be detected only when the incubation time was prolonged from 2 h to 5 h. Data are also presented that some of the chemicals such as dimethyl sulfoxide, m-dioxan, 5-fluorouracil and paraquat, which have been reported to be non-mutagenic in Ames/Salmonella assay, were found to be active in inducing umu gene expression, while the known mutagenic compounds including acrylonitrile, 4,4'-dinitrobiphenyl, furfural, methylene chloride, 1-naphthylamine, sodium azide, o-tolidine and o-toluidine were non-genotoxic in the present assay system.  相似文献   

20.
Transgenic mouse assays have revealed that the mouse intestine, despite its resistance to carcinogenesis, is sensitive to the mutagenicity of some heterocyclic amines (HCAs). Little is known, however, about the level and localization of that sensitivity. We assessed the mutagenicity of four orally administered (20 mg/kg per day for 5 days) HCAs-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) hydrochloride, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) acetate-in the intestine of male MutaMice. Two weeks after the last administration, we isolated epithelium from the small intestine, cecum, and colon and analyzed lacZ and cII transgene mutations. PhIP increased the lacZ mutant frequency (MF) in all the samples, and in the small intestine, cII and lacZ MFs were comparable. In the cII gene, G:C to T:A and G:C to C:G transversions were characteristic PhIP-induced mutations (which has also been reported for the rat colon, where PhIP is carcinogenic). In the small intestine, PhIP increased the cII MF to four-fold that of the control, but IQ, MeIQ, and Trp-P-2 did not have a significant mutagenic effect. In the cecum, cII MFs induced by IQ and MeIQ were 1.9 and 2.7 times those in the control, respectively. The MF induced by MeIQ in the colon was 3.1 times the control value. Mutagenic potency was in the order PhIP>MeIQ>IQ; Trp-P-2 did not significantly increase the MF in any tissue. The cecum was the most susceptible organ to HCA mutagenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号