首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell division in the epidermis of stem segments ofT. fournieri stopped immediately when the epidermis was separated from subjacent tissues after having been in contact with these tissues for some time. Thus, the effects of the inductive signals emanating from these tissues did not persist. However, cell division in isolated epidermis cultured alone could be induced by adding asparagine, alanine or glutamine to the medium. Asparagine, at 5 mM, had the greatest stimulatory effect. Growth substances had a synergistic effect on this induction by amino compounds. However, these cell divisions, unlike those in epidermis cultured together with subepidermal tissues, did not lead to organogenesis. The amino compounds which partially replaced the inductive action of subepidermal layers on the epidermis can be considered as one of the endogenous factors coming from the first-named layers in intact explants.  相似文献   

2.
We report the use of Ni2+ and Co2+ on free-hand sections of soybean (Glycine max L.) and Bidens sp to localize polygalacturonates. In soybean only the hourglass cells of the seedcoat stain intensely. In the pod the epidermis of the outer pod wall and a few layers of subepidermal cells stain lightly, while that part of the funiculus adjacent to the seedcoat palisade epidermal cells stains heavily and the neck of the funiculus close to the pod also stains. In Bidens stem sections, the walls of the collenchyma stain most intensely.  相似文献   

3.
Development and structure of the pericarp of Lannea discolor (Sonder) Engl.(Anacardiaceae). The exocarp develops from the outer epidermis and subepidermal, parenchymatous cell layers of the ovary wall. A parenchymatous zone with secretory cavities more or less delimits the exocarp internally. The inner part of the parenchymatous mesocarp is tanniniferous. The parenchymatous transition zone between mesocarp and sclercnchymatous endocarp or sderocarp, contains vascular tissue. The inner endocarp and operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall, while the outer endocarp develops from the parenchymatous zone with procambium strandS. Comparing the pericarp of L.discolor with those of Sclerocarya birrea subsp. caffra and Rhus lancea , the close affinity with Sclerocarya birrea subsp. caffra is evident.  相似文献   

4.
应用植物解剖学、组织化学及植物化学方法对白鲜营养器官根、茎、叶的结构及其生物碱的积累进行了研究。结果显示:(1)白鲜根的次生结构以及茎和叶的结构类似一般双子叶植物;白鲜多年生根主要由周皮、次生韧皮部、维管形成层以及次生木质部组成,根次生韧皮部中可见大量的淀粉、草酸钙簇晶、韧皮纤维以及油细胞;茎由表皮、皮层、维管组织和髓组成;叶由表皮、栅栏组织、海绵组织和叶脉组成;在茎和叶初生韧皮部的位置均分布有韧皮纤维,在叶表皮上分布有头状腺毛和非腺毛;在茎和叶紧贴表皮处分布有分泌囊。(2)组织化学分析结果显示:在白鲜多年生根中,生物碱类物质主要分布在周皮、次生韧皮部、维管形成层和木薄壁细胞中;在茎中,生物碱主要分布在表皮、皮层、韧皮部、木薄壁细胞及髓周围薄壁细胞中;在叶中,生物碱主要分布在表皮细胞、叶肉组织和维管组织的薄壁细胞;此外在分泌囊和头状腺毛中亦含有生物碱类物质。(3)植物化学结果显示,秦岭产白鲜根皮/白鲜皮、根木质部、茎和叶中白鲜碱含量分别为0.041%、0.012%、0.004%和0.002%,其中木质部中白鲜碱含量和其他部分地区白鲜皮中白鲜碱含量类似。研究表明,在秦岭产白鲜营养器官中,除根皮/白鲜皮外,在根木质部亦含有大量的白鲜碱,且在茎和叶中亦含有一定的白鲜碱,具有潜在的开发利用价值。  相似文献   

5.
马虹  郑亚明  曹瑞  孙雅源 《植物研究》2009,29(2):141-146
革苞菊为菊科多年生强旱生草本植物,是蒙古高原植物区系的特有种。本文通过常规石蜡切片法,对革苞菊营养器官进行了形态结构的观察。结果表明:革苞菊叶为等面叶,表皮由1层排列紧密的细胞组成,上下表皮均具气孔,为不规则形;栅栏组织位于上下表皮的内侧,由1层细胞组成;海绵组织由2~3层细胞构成,细胞排列疏松。茎为外韧维管束,可分为表皮、皮层和维管柱三部分,髓发达,髓射线为4~6列细胞。根可分为周皮、皮层、维管柱三部分,根中无髓,导管由中心向四周呈束状辐射排列。在茎与根的薄壁组织中分布着排列整齐的分泌结构。用PAS反应鉴定多糖、考马斯亮蓝鉴定蛋白质后观察了革苞菊的根茎叶中蛋白质和多糖的分布。本文同时讨论了革苞菊营养器官的内部构造与其所处生态环境相适应的特性。  相似文献   

6.
Melanophores in larvae of the white (dd) strain of the Mexican axolotl (Ambystoma mexicanum) are confined to the dorsal midline of the trunk and dorsal posterior part of the head, whereas those in dark larvae (D-) are distributed over the flank as well. Our results show that this phenotype of white larvae is the result of the failure of the melanophores or their neural crest precursor cells to migrate laterally due to an inhibition of or a failure in the support of their migration in the subepidermal space by the overlying epidermis. Correlated light and scanning electron microscopy of dissected larvae showed melanophores occupying the subepidermal space on the flank of dark larvae, whereas these cells were restricted to the dorsal midline of white larvae. Grafting experiments in which patches of epidermis, the underlying mesoderm, or both, were exchanged between dark and white embryos suggested that white epidermis alone can prevent the integration of pigment cells on the flank of dark larvae and, conversely, that grafts of dark epidermis alone can support their migration on the flank of white larvae. Mesoderm, when grafted alone, could not be shown to have similar effects.  相似文献   

7.
Cotyledons of 15 day-old seedlings of fiveBrassica oleracea L. varieties were surveyed to identify salient anatomical features. Both palisade parenchyma cells present in the first subepidermal layer and stomata were found to differ in size.  相似文献   

8.
In Cyperaceae, leaf anatomical characters, in particular the presence of a hypodermis or of a multiple epidermis, have contributed in taxonomic and phylogenetic studies. In this family, the leaf epidermis is often described as uniseriate, and the cells of the subepidermal layers having no chloroplasts are treated as hypodermis. Both tissues have a different ontogenetic origin and hence are not homologous. The aim of the present work was to verify the origin of the subepidermal layers in eight species belonging to Cyperoideae. All species studied presented multiple epidermal layers that were confirmed by leaf ontogeny. In Fimbristylis complanata, F. dichotoma, Pycreus flavescens and P. polystachyos the mature leaves present multiple epidermal layers with cells of the distinct layers similar in shape and size; in the other species studied these cells are different. Especially in the latter case, a multiple epidermis is easily interpreted erroneously as a hypodermis, possibly leading to erroneous evolutionary conclusions. Making correctly distinction between a hypodermis and a multiple epidermis, and hence in case of doubt investigating the origin of the questioned tissue, is compulsory in order to use both characters in a phylogenetic context. Though in the past often called ‘hypodermis’, our leaf ontogenetical observations show that in all species studied, the subepidermical layers constitute a multiple epidermis, originating from the protodermis.  相似文献   

9.
Micromorphological and anatomical characters of two Achillea L. species, A . phrygia Boiss. & Bal. and A. gypsicola Hub-Mor., which are endemic to Turkey, were investigated. It was observed that stem length, corymb width, number of capitula and median phyllary shape were diagnostic characters. In the anatomical studies, cross sections were taken from roots, stem and leaves. It was observed that roots of the investigated taxa had a secondary thickening. Endodermis and collenchyma layers were prominent in the stem of both taxa and they had a bifacial mesophyll while the layers of the mesophyll varied. Stomata were anomocytic in both species. We found that there was a significant difference in terms of width of epidermis cells and length of cortex cells in the root, epidermis width and length, collenchyma and parenchyma cells, endodermis length, diameter of trachea of stem, length of upper epidermis cells, width of lower epidermis cells, length of palisade parenchyma and spongy parenchyma cells, diameter of trachea and stomata length of leaf between the two taxa (p<0.05). Scanning electron microscopy (SEM) was used to describe the micromorphology of trichomes and achenes. In A. phrygia , long and eglandular trichomes were more dense on the stem and leaf epidermis. Achene micromorphological characteristics such as size, shape and achene coat were considered to be useful in separating the investigated species.  相似文献   

10.
Leaflets of Vicia faba were pulse-labeled with 14CO2 to follow the subsequent movement of photosynthate between leaf tissues. Samples were taken during a 12CO2 chase, quick frozen, freeze-substituted, and embedded in methacrylate. Paradermal sections provided tissue samples consisting only of upper epidermis, palisade parenchyma, spongy parenchyma and veins, spongy parenchyma, or lower epidermis. Most CO2 fixation occurred in the palisade parenchyma, but its 14C content declined rapidly after labeling. Concomitant with the decline of activity in the palisade parenchyma, there was an increase in activity in the spongy parenchyma and upper epidermis and a slow increase in the lower epidermis. Activity in the palisade parenchyma and spongy parenchyma eventually reached similar levels and remained constant. Tissue samples containing veins were consistently the most radioactive, and activity in those samples showed a decline. Very little change occurred in the insoluble fraction from any tissue. The results support previous assumptions regarding the pathway of assimilate transport to the veins, and demonstrate the rapidity of such transport. Sucrose is apparently the principal mobile compound.  相似文献   

11.
Growth, Turgor, Water Potential, and Young's Modulus in Pea Internodes   总被引:1,自引:0,他引:1  
The relations between longitudinal growth, Young's modulus, turgor, water potential, and tissue tensions have been studied on growing internodes of etiolated pea seedlings in an attempt to apply some physical concepts to the growth of a well-known plant material. The modulus has been determined by the resonance frequency method and expressed as Etissue It increases nearly proportional to the turgor pressure and is at water saturation more than 50 times higher than at plasmolysis. Etissue is higher in the epidermis than in the ground parenchyma. Indoleacetic acid causes a decrease in Etissue Other properties have been studied on intact and split segments of internodes in solutions of graded mannitol additions. — The following tentative picture of the normal course of the growth has been obtained. Auxin induces growth both in the periphery (epidermis) and in the central core (parenchyma) under a decrease in Etissue This is followed by an increase of Etissue which is independent of auxin but depending upon the turgor pressure. It is assumed to involve internal structural changes of the cell walls of the type of creep. The rapid growth takes place in a dynamic system with a low water potential despite favourable water conditions. Epidermis and parenchyma grow equally rapid without tissue tensions. — Such can be produced artificially by splitting of segments and water uptake. The parenchyma thereby loses its sensitivity to auxin. This is the background of the split stem test for auxin. — Etissue increases when growth is slowing down, probably owing to both synthesis of wall substance and structural changes within the wall. The cells attain a more static condition with Etissue higher in epidermis than in parenchyma. This leads to the normal tissue tensions. — The result agrees with growth according to the multi-net-principle. The cause of the low water potential and low turgor is discussed with reference to the dynamic nature of both growth and water transport and a probably low matric potential of the streaming water. The decrease in Etissue following auxin addition is small but is the net difference between an auxin-induced decrease and an increase through the assumed creep.  相似文献   

12.
The exocarp sensu lato , which develops from the outer epidermis and adjacent parenchyma of the ovary wall, consists of collenchyma cells with a stomatous epidermis. The fleshy, parenchymatous mesocarp or sarcocarp develops after endocarp differentiation. The endocarp is partly spongy and partly woody. The spongy endocarp contains most of the vascular tissue and fills the cavities and grooves of the intricately sculptured outer woody endocarp. The inner woody endocarp and adjacent woody, endocarpal operculum develop from the inner epidermis and subepidermal parenchyma of the ovary wall. The bitegmic, anatropous ovule develops into a derived, exalbuminous seed with an undifferentiated seed-coat. An extensive chalaza, extensive hypostase sensu lato and the raphe are important in the development of the seed-coat. The pericarp and seed-coat of H. caffrum is compared with those of Sclerocarya birrea subsp. caffra and Lannea discolor . The close phylogenetic relationship of these three species of the Spondieae is reaffirmed. The marked similarities in pericarp and seed structure between H. caffrum and species of the genus Spondias are noted.  相似文献   

13.
Comer AE 《Plant physiology》1978,62(3):354-359
When pith parenchyma explants are taken from Coleus blumei plants and cultured on an agar medium containing sucrose and indoleacetic acid wound vessel members differentiate in 10 days. The time course of wound xylem appearance and an auxin requirement suggest that this uncomplicated system is responding in a manner comparable to wounded Coleus plants and cultured stem segments.

Histological examination and cell size comparisons confirm that parenchyma cells divide before differentiating. When colchicine is used to prevent mitosis no tracheary elements differentiate. Following the time course of this cytodifferentiation histologically shows that xylem differentiates from cells that are the products of several cell divisions.

  相似文献   

14.
Anatomy and ultrastructure of the floral nectary of Peganum harmala L. were studied using light and transmission electron microscopy. The floral nectary was visible as a glabrous, regularly five‐lobed circular disc encircling the base of the ovary. Anatomically, it comprised a single layered epidermis and 15–20 layers of small, subepidermal secretory cells overlying several layers of large, ground parenchyma cells. The floral nectary was supplied by phloem and both sieve tubes and companion cells were found adjacent to the ground parenchyma. Based on our ultrastructural observations, plastids of secretory cells during the early stages of development were rich in starch grains and/or osmiophilic plastoglobuli, but these disappeared as nectar secretion progressed. The nectar appeared to exude through the modified stomata along symplastic and apoplastic routes. The abundant plastids and mitochondria suggest an eccrine mechanism of nectar secretion in P. harmala.  相似文献   

15.
普通烟草(Nicotiana tabacum)花梗表皮薄层组织在不同生长素和细胞分裂素配比的MS培养基上及不同的培养条件下,可分别诱导,得到直接发生的营养芽和花芽,以及根和不发生器官分化的愈伤组织。组织间的相互联系,影响器官发育潜能的发挥。细胞学观察发现,直接发生的营养芽和花芽起源于薄层组织的亚表皮细胞层。  相似文献   

16.
Nematocysts are characteristic organelles of the phylum cnidaria. They are designated kleptocnidae when sequestered in animals that feed on cnidaria. Kleptocnidae are known for more than a century. Nevertheless it is still enigmatic how selected nematocyst types survive in the predator and how they reach their final destination in the foreign body. In the free-living Platyhelminth Microstomum lineare the fate of nematocysts of the prey Hydra oligactis was analyzed at the ultrastructural level and by fluorescence microscopy using hydra polyps that had been stained in vivo with the fluorescent dyes TROMI and TRITC. M. lineare digested hydra tissue in its intestine within 30?min and all nematocyst types were phagocytosed without adherent cytoplasm by intestinal cnidophagocytes. Desmoneme and isorhiza nematocysts were digested whereas cnidophagocytes containing the venom-loaded stenotele nematocysts started to migrate out of the intestinal epithelia through the parenchyma to the epidermis thereby traversing the subintestinal and subepidermal muscle layer. Within one to two days, M. lineare began to form a muscle layer basolateral around epidermal cnidophagocytes. Epidermal stenoteles survived in M. lineare for at least four weeks. The ability of epidermal stenotele nematocysts to discharge suggest that this hydra organelle preserved its physiological properties in the new host.  相似文献   

17.
Inheritance of epidermis pigmentation in the pericarp of sunflower seeds was studied. Inheritance of pigmentation was confirmed by three alleles Ew (epidermis devoid of pigmentation), Estr (epidermal pigmentation in strips), and Edg (solid pigmentation). Dominance of the lack of epidermis pigmentation over striped epidermis and striped epidermis over solid pigmentation was established. It was shown that the striped epidermis pigmentation and the presence of a testa layer are controlled by two genes, whose expression is independent from each other. Yellowish hypodermis was discovered in the sample I2K2218, which is monogenically dominantly inherited.  相似文献   

18.
Hebanthe eriantha (Poir.) Pedersen, a climbing species of the Amaranthaceae increases in stem thickness by forming successive cambia. The family is dominated by herbaceous species and is constantly under discussion due to its disputed nature of the meristem. In the young stem small alternate segments of vascular cambium cease to divide and new arc of cambium initiates outside to it. The newly formed arcs connect with pre-existing alternate segments of cambium to complete the ring. On the contrary, in thick stems, instead of small segments, complete ring of cambium is replaced by new one. These new alternate segments/cambia originate from the parenchyma cells located outside to the phloem produced by previous cambium. Cambium is storied and exclusively composed of fusiform initials while ray cells remain absent at least in the early part of the secondary growth. However, large heterocellular rays are observed in 15-mm diameter stems but their frequency is much lower. In some of the rays, ray cells become meristematic and differentiate into radially arranged xylem and phloem elements. In fully grown plants, stems are composed of several successive rings of secondary xylem alternating with secondary phloem. Secondary xylem is diffuse-porous and composed of vessels, fibres, axial parenchyma while exceptionally large rays are observed only in the outermost regions of thick stems. Vessel diameter increases progressively from the centre towards the periphery of stems. Although the origin of successive cambia and composition of secondary xylem of H. eriantha remains similar to other herbaceous members of Amaranthaceae, the occurrence of relatively wider and thick-walled vessels and large rays in fully grown plants is characteristic to climbing habit.  相似文献   

19.
Trifolium repens (white clover) stolons were inoculated with Ditylenchus dipsaci (stem nematode), and the development of resulting infestations was monitored. Nematodes initially remained confined to superficial locations, concentrating in petiole axils near inoculation points. They were able to migrate slowly from the inidal inoculation points and infest adjacent axils, especially in regions near the stolon tip. As time progressed, in some axils, nematodes migrated through the stolon epidermis and colonized slowly expanding subepidermal pockets of host tissue (ca. 0.2-mm length of stolon/day). In these loci nematodes established exponentially increasing populations, but the rates of locus expansion remained constant, indicating that locus expansion was limited by unidentified host-dependent factors. As a result of increasing population pressure within subepidermal loci, J4 entered a "diapause" state and the rate of egg production by adults declined, thereby reducing rate of population growth to more sustainable levels. Typically, these populations peaked at ca. 10,000 individuals in ca. 160 days occupying 3-cm lengths of stolon. Thereafter, heavily infested regions of stolons started to die, leading to the formation of longitudinal splits in their epidermis. In other axils, nematodes did not migrate into the stolons but remained confined to axils. Some of these populations increased a hundred-fold in 95 days, with population growth ending when petioles started to die. Host plant stolon morphology was affected only when subepidermal stolon populations developed high population levels (>100 nematodes) within close proximity (<2 cm) to active terminal meristems. This occurred either when axillary buds became active on previously infested nodes or when nematodes established endoparasitic populations at locations near the stolon tip during winter and spring, when the rate of stolon extension was limited by low light intensity. Affected stolon tips could "escape" from the influence of such infestations when light intensity and temperature increased. Nematode activity was limited by low temperature rather than light intensity. Global warming is likely to lead to greater damage to infested plants during the winter and early spring because the predicted milder winter temperatures will enhance nematode activity but not necessarily promote stolon growth.  相似文献   

20.
Effect of Peeling on IAA-induced Growth in Avena Coleoptiles   总被引:1,自引:0,他引:1  
POPE  D. G. 《Annals of botany》1982,49(4):493-501
The act of peeling removes the epidermis exclusively from Avenacoleoptiles. Peeling inhibits IAA-induced growth, by inhibitingthe growth of segments incubated in the presence of IAA, andpromoting that of those incubated in water. The magnitude ofthe inhibition of IAA-induced growth is proportional to theamount of epidermis removed. It is shown that neither lateralswelling, wounding, anaerobiosis, nor exposure to supraoptimalconcentrations of IAA cause the inhibition. It is concludedthat in Avena coleoptiles the epidermis regulates the rate ofexpansion of the underlying parenchyma cells and is the principaltarget of IAA-action. Avena sativa L., oat, coleoptile, indol-3-ylacetic acid, auxin, extension growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号