首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

2.
The dependence on pH and membrane potential of the pore formed by colicin A and its C-terminal 20 kDa fragment has been measured using planar lipid bilayers. The single channel conductance of the pore formed by both colicin A and the fragment increases with pH with an apparent pK of 6.0. At pH 5.0 the gating by membrane potential of the channels formed by either colicin A or its fragment is identical. At the same pH, quite similar pore properties were found when using the related bacteriocin, colicin E1. In agreement with previous studies, these data indicate that the protein structure containing the lumen of the pore resides in the 20 kDa C-terminal part of the colicin A and favours the recently proposed model, based on protein sequence analysis, which proposes that colicin A, E1 and IB C-terminal domains are folded in the same three-dimensional structure. However, it is also shown that colicin A and not its C-terminal fragment undergoes a pH dependent transition between an acidic and a basic form of the pore with an apparent pK of 5.3. The two forms of the pore differ by their gating charge but not by the channel size. These results suggest that there is a pH dependent association between the C-terminal domain carrying the lumen of the pore and another domain of the molecule which affect the pore sensitivity to membrane potential.  相似文献   

3.
Colicin E1 is a plasmid-encoded bacteriocidal protein which, though water soluble when secreted by its host bacterium, spontaneously interacts with planar lipid bilayers to form voltage-gated ion channels. In asolectin bilayers, the preference for anions over cations exhibited by these channels at low pH can be reversed by raising the pH on either side of the membrane. When incorporated into membranes composed of either of the two zwitterionic lipids, bacterial phosphatidylethanolamine and diphytanoyl phosphatidylcholine, colicin E1 channels were nearly ideally anion selective in the limit of low pH and moderately cation selective at the high pH limit. In phosphatidylcholine membranes, however, the response of these channels to changes in pH exhibited a pattern of behavior peculiar to this lipid. If the side of the membrane on which the protein had been introduced (the cis side) was exposed to pH 4.0, all the channels in the bilayer, whether opened or closed, became refractory to further changes in pH. This irreversibility has been interpreted as evidence that the selectivity of colicin E1 is under the control of a pH-sensitive conformational change. Protonation of groups on the cis side of the membrane appear to be essential to the conversion to the anion-selective state. These groups are rendered kinetically inaccessible to the aqueous phase when the transition takes place in phosphatidylcholine membranes.  相似文献   

4.
Colicin E1 in planar lipid bilayers   总被引:3,自引:0,他引:3  
The channel formed by the C-terminal domain of colicin E1 in planar lipid bilayers has proven to be more complex than one might have guessed for such a simple system. The protein undergoes a pH-dependent rearrangement which transforms it from a water soluble form to a much different membrane bound form. There are at least two bound states which don't form a channel. The process by which the channel opens and closes is regulated by the pH and the transmembrane voltage. The voltage is probably sensed by at least 3 (and more likely 4 or more) lysine residues which must be driven through the field to open the channel. The process appears to be hindered by particular carboxyl groups when they are in the unprotonated state. The open channel has several substates and several superstates. Very large positive voltage catalyzes a transition of the open channel to an inactivated state, and may be able to drive the channel-forming region of the protein across the membrane. Little is known about the structure of any of these states, but the open channel is large enough to allow NAD to traverse the membrane and appears to be formed by one colicin molecule. This single polypeptide mimics many of the properties found in channels of mammalian cell membranes, but it may prove more relevant as a model for the transport of proteins across membranes. The comparative ease with which the protein can be manipulated chemically and genetically, along with the complexity of its behavior, promises to keep several laboratories busy for some time.  相似文献   

5.
Electrostatic potentials created by fixed or induced charges regulate many cellular phenomena including the rate of ion transport through proteinaceous ion channels. Nanometer-scale pores of these channels also play a critical role in the transport of charged and neutral macromolecules. We demonstrate here that, surprisingly, changing the charge state of a channel markedly alters the ability of nonelectrolyte polymers to enter the channel's pore. Specifically, we show that the partitioning of differently-sized linear nonelectrolyte polymers of ethylene glycol into the Staphylococcus aureus α-hemolysin channel is altered by the solution pH. Protonating some of the channel side chains decreases the characteristic polymer size (molecular weight) that can enter the pore by ∼25% but increases the ionic current by ∼15%. Thus, the “steric” and “electric” size of the channel change in opposite directions. The results suggest that effects due to polymer and channel hydration are crucial for polymer transport through such pores. Received: 16 March 1997 / Accepted: 24 April 1997  相似文献   

6.
Colicin E1 belongs to a group of bacteriocins whose cytotoxicity toward Escherichia coli is exerted through formation of ion channels that depolarize the cytoplasmic membrane. The lipid dependence of colicin single-channel conductance demonstrated intimate involvement of lipid in the structure of this channel. The colicin formed "small" conductance 60-picosiemens (pS) channels, with properties similar to those previously characterized, in 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (C20) or thinner membranes, whereas it formed a novel "large" conductance 600-pS state in thicker 1,2-dierucoyl-sn-glycero-3-phosphocholine (C22) bilayers. Both channel states were anion-selective and voltage-gated and displayed a requirement for acidic pH. Lipids having negative spontaneous curvature inhibited the formation of both channels but increased the ratio of open 600 pS to 60 pS conductance states. Different diameters of small and large channels, 12 and 16 A, were determined from the dependence of single-channel conductance on the size of nonelectrolyte solute probes. Colicin-induced lipid "flip-flop" and the decrease in anion selectivity of the channel in the presence of negatively charged lipids implied a significant contribution of lipid to the structure of the channel, most readily described as toroidal organization of lipid and protein to form the channel pore.  相似文献   

7.
Protein evolution is not a random process. Views which attribute randomness to molecular change, deleterious nature to single-gene mutations, insufficient geological time, or population size for molecular improvements to occur, or invoke “design creationism” to account for complexity in molecular structures and biological processes, are unfounded. Scientific evidence suggests that natural selection tinkers with molecular improvements by retaining adaptive peptide sequence. We used slot-machine probabilities and ion channels to show biological directionality on molecular change. Because ion channels reside in the lipid bilayer of cell membranes, their residue location must be in balance with the membrane’s hydrophobic/philic nature; a selective “pore” for ion passage is located within the hydrophobic region. We contrasted the random generation of DNA sequence for KcsA, a bacterial two-transmembrane-domain (2TM) potassium channel, from Streptomyces lividans, with an under-selection scenario, the “jackprot,” which predicted much faster evolution than by chance. We wrote a computer program in JAVA APPLET version 1.0 and designed an online interface, The Jackprot Simulation , to model a numerical interaction between mutation rate and natural selection during a scenario of polypeptide evolution. Winning the “jackprot,” or highest-fitness complete-peptide sequence, required cumulative smaller “wins” (rewarded by selection) at the first, second, and third positions in each of the 161 KcsA codons (“jackdons” that led to “jackacids” that led to the “jackprot”). The “jackprot” is a didactic tool to demonstrate how mutation rate coupled with natural selection suffices to explain the evolution of specialized proteins, such as the complex six-transmembrane (6TM) domain potassium, sodium, or calcium channels. Ancestral DNA sequences coding for 2TM-like proteins underwent nucleotide “edition” and gene duplications to generate the 6TMs. Ion channels are essential to the physiology of neurons, ganglia, and brains, and were crucial to the evolutionary advent of consciousness. The Jackprot Simulation illustrates in a computer model that evolution is not and cannot be a random process as conceived by design creationists.  相似文献   

8.
A COOH-terminal tryptic fragment (Mr approximately equal to 20,000) of colicin E1 has been proposed to contain the membrane channel-forming domain of the colicin molecule. A comparison is made of the conductance properties of colicin E1 and its COOH-terminal fragment in planar bilayer membranes. The macroscopic and single channel properties of colicin E1 and its COOH-terminal tryptic fragment are very similar, if not indistinguishable, implying that the NH2-terminal, two-thirds of the colicin E1 molecule, does not significantly influence its channel properties. The channel-forming activity of both polypeptides is dependent upon the presence of a membrane potential, negative on the trans side of the membrane. The average single channel conductance of colicin E1 and the COOH-terminal fragment is 20.9 +/- 3.9 and 19.1 +/- 2.9 picosiemens, respectively. The rate at which both proteins form conducting channels increases as the pH is lowered from 7 to 5. Both molecules require negatively charged lipids for activity to be expressed, exhibit the same ion selectivity, and rectify the current to the same extent. Both polypeptides associate irreversibly with the membrane in the absence of voltage, but subsequent formation of conducting channels requires a negative membrane potential.  相似文献   

9.
Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel formation, and voltage-gated translocation of charged regions of the colicin domain across the membrane; (ii) structure-function data on the voltage-gated K(+) channel showing translocation of an arginine-rich helical segment through the membrane; (iii) toroidal channels formed by small peptides that involve local participation of anionic lipids in an inverted phase. It is proposed that translocation of the colicin across the membrane occurs through minimization of the Born charging energy for translocation of positively charged basic residues across the lipid bilayer by neutralization with anionic lipid head groups. The resulting pore structure may consist of somewhat short, ca. 16 residues, trans-membrane helices, in a locally thinned membrane, together with surface elements of inverted phase lipid micelles.  相似文献   

10.
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation.  相似文献   

11.
Residue ionization and ion transport through OmpF channels   总被引:5,自引:1,他引:4       下载免费PDF全文
Single trimeric channels of the general bacterial porin, OmpF, were reconstituted into planar lipid membranes and their conductance, selectivity, and open-channel noise were studied over a wide range of proton concentrations. From pH 1 to pH 12, channel transport properties displayed three characteristic regimes. First, in acidic solutions, channel conductance is a strong function of pH; it increases by approximately threefold as the proton concentration decreases from pH 1 to pH 5. This rise in conductance is accompanied by a sharp increase in cation transport number and by pronounced open-channel low-frequency current noise with a peak at ~pH 2.5. Random stepwise transients with amplitudes at ~1/5 of the monomer conductance are major contributors to this noise. Second, over the middle range (pH 5 ÷ pH 9), channel conductance and selectivity stay virtually constant; open channel noise is at its minimum. Third, over the basic range (pH 9 ÷ pH 12), channel conductance and cation selectivity start to grow again with an onset of a higher frequency open-channel noise. We attribute these effects to the reversible protonation of channel residues whose pH-dependent charge influences transport by direct interactions with ions passing through the channel.  相似文献   

12.
Here, we have characterized four pH-dependent states: alkaline state, “B” (pH 9.0), native state, “N” (pH 7.4), acid-induced state, “A” (pH 2.2) and molten globule state, “MG” (pH 1.8) of Rhizopus niveus lipase (RNL) by CD, tryptophanyl fluorescence, ANS binding, DLS, and enzyme activity assay. This “MG” state lacks catalytic activity and tertiary structure but it has native-like significant secondary structure. The “R h” of all the four states of RNL obtained from DLS study suggests that the molecular compactness of the protein increases as the pH of solution decreases. Kinetic analysis of RNL shows that it has maximum catalytic efficiency at state “B” which is 15-fold higher than state “N.” The CD and tryptophanyl fluorescence studies of RNL on GuHCl and temperature-induced unfolding reveal that the “MG” state is more stable than the other states. The DSC endotherms of RNL obtained at pH 9.0, 7.4, and 2.2 were with two transitions, while at pH 1.8 it showed only a single transition.  相似文献   

13.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

14.
The antibiotic protein colicin E1 forms ion channels in planar lipid bilayers that are capable of conducting monovalent organic cations having mean diameters of at least 9 Å. Polyvalent organic cations appear to be completely impermeant, regardless of size. All permeant ions, whether large or small, positively or negatively charged, are conducted by this channel at very slow rates. We have examined the permeability of colicin E1 channels to anionic probes having a variety of sizes, shapes, and charge distributions. In contrast to the behavior of cations, polyvalent as well as monovalent organic anions were found to permeate the colicin E1 channel. Inorganic sulfate was able to permeate the channel only when the pH was 4 or less, conditions under which the colicin E1 protein is predominantly in an anion-preferring conformational state. The less selective state(s) of the colicin E1 channel, observed when the pH was 5 or greater, was not permeable to inorganic sulfate. The sulfate salt of the impermeant cation Bis-T6 (N,N,N,N-tetramethyl-1,6-hexanediamine) had no effect on the single channel conductance of colicin E1 channels exposed to solutions containing 1 m NaCl at pH 5. The complete lack of blocking activity by either of these two impermeant ions indicates that both are excluded from the channel lumen. These results are consistent with our hypothesis that there is but a single location in the lumen of the colicin E1 channel where positively charged groups can be effectively hydrated. This site may coincide with the location of the energetic barrier which impedes the movement of anions.The authors wish to thank Dr. F.S. Cohen for making available unpublished data and for helpful comments. This work was supported by National Institutes of Health grant GM 37396 and by the Howard Hughes Medical Institute Undergraduate Biological Sciences Education Initiative (E.R.K.)  相似文献   

15.
Structural and functional properties of colicin B   总被引:24,自引:0,他引:24  
Colicin B was isolated in pure form from cells of Escherichia coli that contained the colicin activity and immunity genes cloned on a multi-copy plasmid. Active colicin B consisted of a single polypeptide with Mr of about 60,000. The sequence of 44 amino acids from the amino-terminal portion is presented. The isoelectric point of the protein was at 4.5. Colicin B inhibited the membrane potential-dependent transport of proline and enhanced the uptake of alpha-methylglucoside via the phosphoenolpyruvate-dependent phosphotransferase system. Colicin B formed small, ion permeable channels with an average single-channel conductance of 13.7 pS (1 pS = 10(-12) siemens) in 1 M KCl. Channel formation was voltage-dependent in the pH range between 4.5 and 6. At pH 7 the channels were voltage independent. Voltage-dependent channels were only formed when the trans compartment (the protein was added to the cis compartment) was negative by at least 70 mV. Evidence for an asymmetric single channel conductance was obtained. With KCl a hyperbolic conductance-concentration relationship was observed. The conductance for monovalent cations was minimal for Li+ and was maximal for NH+4. The single channel conductance of colicin B was larger than that of colicin A as judged from lipid bilayer experiments under otherwise identical conditions.  相似文献   

16.
The in vitro activity of many pore-forming toxins, in particular, the rate of increase in the membrane conductance induced by the channel-forming domain (P178) of colicin E1 is maximum at an acidic pH. However, after P178 binding at acidic conditions, a subsequent pH shift from 4 to 6 on both sides of the planar bilayer lipid membrane caused a large increase in the trans-membrane current which was solely due to an increase in the number of open channels. This effect required the presence of anionic lipid. Replacing the His440 residue of P178 by alanine eliminated the pH-shift effect thereby showing that it is associated with deprotonation of this histidine residue. It was concluded that alkalinization-induced weakening of the electrostatic interactions between colicin and the membrane surface facilitates conformational changes required for the transition of membrane-bound colicin molecules to an active channel state.  相似文献   

17.
Based on the model of a toroidal protein-lipid pore, the effect of calcium ions on colicin E1 channel was predicted. In electrophysiological experiments Ca2+ suppressed the activity of colicin E1 channels in membranes formed of diphytanoylphosphatidylglycerol, whereas no desorption of the protein occurred from the membrane surface. The effect of Ca2+ was not observed on membranes formed of diphytanoylphosphatidylcholine. Single-channel measurements revealed that Ca2+-induced reduction of the colicin-induced current across the negatively charged membrane was due to a decrease in the number of open colicin channels and not changes in their properties. In line with the toroidal model, the effect of Ca2+ on the colicin E1 channel-forming activity is explained by alteration of the membrane lipid curvature caused by electrostatic interaction of Ca2+ with negatively charged lipid head groups.  相似文献   

18.
Summary When present at nanomolar concentrations on one side of a lipid bilayer membrane,helianthus toxin (a protein of mol wt16,000) increases enormously membrane permeability to ions and nonelectrolytes by forming channels in the membrane. Membranes containing sphingomyelin are especially sensitive to toxin, but sphingomyelin isnot required for toxin action. Conductance is proportional to about the 4th power of toxin concentration. Single channel conductances are approximately 2×10–10 mho in 0.1m KCl. Toxin-treated membranes are more permeable to K+ and Na+ than to Cl and SO 4 = , but the degree of selectivity is pH dependent. Above pH 7 membranes are almost ideally selective for K+ with respect to SO 4 = , whereas below pH 4 they are poorly selective. The channels show classical molecular sieving for urea, glycerol, glucose, and sucrose — implying a channel radius >5 Å. In symmetrical salt solutions above pH 7, theI–V characteristic of the channel shows significant rectification: below pH 5 there is very little rectfication. Because of the effects of pH on ion selectivity and channel conductance, and also because of the rectification in symmetrical salt solutions and the effect of pH on this, we conclude that there are titratable negative charge groups in the channel modulating ion permeability and selectivity. Since pH changes on the side containing the toxin are effective whereas pH changes on the opposite side are not, we place these negative charges near the mouth of the channel facing the solution to which toxin was added.  相似文献   

19.
Low voltage-activated (LVA) Ca2+ conductances were characterized in the neurons of the associative laterodorsal (LD) thalamic nucleus in rat brain slices and in enzymatically isolated thalamic units using electrophysiological techniques. Voltage dependence, kinetics of inactivation, pharmacology, and selectivity of the LVA current in the thalamic neurons from animals older than 14 postnatal days were consistent with the existence of two, “fast” and “slow,” subtypes of LVA Ca2+ channels. “Slow” LVA current in enzymatically isolated thalamic neurons was much less prominent, compared with that in slice neurons, suggesting that respective channels are predominatly located on the distal dendrites. “Fast” Ca2+ channels were sensitive to nifedipine (K d−2.6 μM) and La3+ (K d−1.0 mM), whereas “slow” Ca2+ channels were sensitive to Ni2+ (25 μM). Selectivity of the “fast” Ca2+ channels was similar to that found for the LVA Ca2+ channels in other preparations (I Ca:I Sr:I Ba−1.0: 1.23: 0.94), while selectivity of the “slow” Ca2+ channels more resembled selectivity of the HVA Ca2+ channels (I Ca:I Sr:I Ba−1.0: 2.5: 3.4).  相似文献   

20.
Mutation E71A in the bacterial K+-channel KcsA has been shown to abolish the activation-coupled inactivation of KcsA via significant alterations of the peptide backbone in the vicinity of the selectivity filter. In the present study, we examined channel-blocking behavior of KcsA-E71A by tetraethylammonium (TEA) from both the extra- and the intracellular sides. First, we found that E71A is inserted either in cis or trans orientation in a planar lipid bilayer; however, it exhibits only one orientation in proteoliposomes as determined by extravesicular partial chymotrypsin digestion. Second, E71A exhibits a lower extracellular TEA affinity and is more sensitive to intracellular TEA compared to wild-type KcsA, which apparently has >50-fold higher affinity for extracellular TEA and ~2.5-fold lower affinity for intracellular TEA compared to E71A. In additional experiments, we investigated the influence of negatively charged phosphatidylglycerol (PG) on channel-gating properties in phosphatidylcholine lipid bilayers. It was found that high PG content decreases the single-channel conductance and increases the channel open time and open probability. Taken together, our data suggest that the “flipped” conformation of the selectivity filter present in E71A allows weaker extracellular and stronger intracellular TEA binding, whereas higher PG content decreases channel conductivity and stabilizes the channel open “flipped” state via electrostatic interaction in the proximity of the channel pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号