首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous study we found that free cholesterol (FC) and cholesterol ester (CE) concentrations in fast-glycolytic (FG) muscle tissue from dystrophic mice are significantly higher than normal. This increase is not due to an increased capacity for de novo cholesterol biosynthesis. HMG-CoA reductase (HMGR) (the enzyme which catalyzes the rate limiting step) activity is significantly decreased in dystrophic muscle compared to normal. This decrease is paralleled by an increased capacity for both CE production and hydrolysis, i.e., both Acyl-CoA:cholesterol acyltransferase (ACAT) activity and the activities of both lysosomal and sarcoplasmic cholesterol ester hydrolases (CEH) are greatly increased. These enzyme changes in dystrophic FG muscle are similar those observed in normal tissues with elevated levels of cholesterol, which suggests that such changes are not the cause of the altered cholesterol concentrations but are rather the response of the tissue to elevated levels of cholesterol.  相似文献   

2.
Cholesterol and cholesteryl ester concentrations and cholesteryl ester fatty acid substituents have been measured during the first 10 weeks of life in tissues of normal and dystrophic mice. In normal Swiss and 129ReJ(+/?) mice the concentrations of both cholesterol and cholesteryl esters remain essentially constant in liver, increase in brain and fall sharply in both thigh (mixed fiber type muscles) and chest muscles (predominantly slow oxidative muscles) over this period. In all cases the concentration of free cholesterol exceeds that of esterified cholesterol. In dystrophic mice, similar patterns are found in brain and liver. In both thigh and chest muscles, however, the developmental pattern is significantly different. After an initial decrease the concentrations of cholesterol and cholesteryl esters increase rapidly with the largest increase occurring in the concentration of cholesteryl esters which by 10 weeks of age exceeds the concentration of cholesterol in chest muscle. During the same period the pattern of esterified fatty acids changes gradually in dystrophic tissues towards an increasing ratio of unsaturated/saturated fatty acids. By 10 weeks of age this ratio is significantly higher in dystrophic tissues than normal in all tissues tested.  相似文献   

3.
4.
Young dystrophic (dy) murine muscle is capable of "spontaneous" regeneration (i.e., regeneration in the absence of external trauma); however, by the time the mice are 8 weeks old, this regeneration ceases. It has been suggested that the cessation of regeneration in dystrophic muscle may be due to exhaustion of the mitotic capability of myosatellite cells during the early stages of the disease. To test this hypothesis, orthotopic transplantation of bupivacaine treated, whole extensor digitorum longus muscles has been performed on 14 to 16-week-old 129 ReJ/++ and 129 ReJ/dydy mice. The grafted dystrophic muscle is able to produce and maintain for 100 days post-transplantation 356 +/- 22 myofibers, a number similar to that found in age-matched dystrophic muscle. The ability of old dystrophic muscle to regenerate subsequent to extreme trauma indicates that the cessation of "spontaneous" regeneration is due to factor(s) other than the exhaustion of mitotic capability of myosatellite cells. Moreover, there is no significant difference in myosatellite cell frequencies between grafted normal and dystrophic muscles (100 days post-transplantation). Myosatellite cell frequencies in grafted muscles are similar to those in age-matched, untraumatized muscles. While grafting of young dystrophic muscle modifies the phenotypic expression of histopathological changes usually associated with murine dystrophy, grafts of older dystrophic muscle show extensive connective-tissue infiltration and significantly fewer myofibers than do grafts of age-matched normal muscle. As early as 14 days post-transplantation, it is possible to distinguish between grafts of old, normal and dystrophic muscles. It is suggested that the connective tissue stroma, present in the dystrophic muscle at the time of transplantation, may survive the grafting procedure.  相似文献   

5.
In an attempt to understand the mechanism of calcium accumulation in myopathies, changes in the major calcium-binding protein, calmodulin, was studied in genetically dystrophic chickens. Measurements by radioimmunoassay revealed an increase in the calmodulin concentration of dystrophic chicken muscles. Poly A-containing RNA(s) of fast and slow muscles from the normal and dystrophic chicks were hybridized with [32P]-labeled calmodulin cDNA probe by the dot-hybridization technique. Densitometric scan of the autoradiogram showed that the calmodulin mRNA levels of dystrophic fast muscles (pectoralis and posterior latissimus dorsi) were approximately two-fold higher than those of the corresponding normal muscles. No significant change in calmodulin and calmodulin messenger RNA of slow muscle (ALD) was found in dystrophic chickens. Our results suggest that increased calcium flux within the dystrophic muscle may be modulated by calmodulin.  相似文献   

6.
The penetration of a nonmetabolized glucose analogue, 3--O-methyl-D-glucose, across the plasma membranes of tissues from dystrophic mice and cardiomyopathic (dystrophic) hamsters has been compared with that of normal controls. Under basal conditions the penetration of test sugar was similar in lens and diaphragm of normal and dystrophic 129/ReJ mice. Stimulation of sugar transport by 2,4-dinitrophenol did occur in normal but not in dystrophic diaphragm. A submaximal concentration of insulin had a more variable effect in dystrophic than in normal muscle while a supramaximal concentration of the hormone increased the uptake of the glucose analogue to an equal extent in the two tissues. In the BIO 14.6 strain of cardiomyopathic hamsters, uncoupling of oxidative phosphorylation did not increase sugar transport in extensor digitorum longus muscles, while the normal effect was observed in dystrophic soleus and in both these muscles of the random bred controls. The absence of an effect by a condition simulating anoxia suggests that in dystrophy, certain muscles are unable to accelerate the entry of glucose when this is required.  相似文献   

7.
Myofibrillar, mitochondrial, and microsomal fractions were prepared from normal and dystrophic mouse limb muscle by differential centrifugation and analyzed for phospholipids and cholesterol. Fatty acids and aldehydes of neutral lipids and of phospholipids from whole muscle and particulate fractions were also determined. Normal microsomes contained more lecithin and less total ethanolamine phospholipids and cardiolipin than mitochondria. The myofibrils had an intermediate phospholipid composition, but their cholesterol-phospholipid ratio was smaller than that of the other two fractions. Except for an increased percentage of phosphatidalethanolamine in the dystrophic mitochondria, only the composition of the dystrophic microsomes differed from normal by containing less lecithin but more total ethanolamine phospholipid, phosphatidalethanolamine, sphingomyelin, and cholesterol. No significant differences were found in the fatty acid composition of neutral lipid extracts from normal and dystrophic preparations, but there was a significant decrease in the percentage of 22:6 in phospholipids from both dystrophic whole muscle and microsomes (-25% and -37%, respectively), whereas the 20:4 content was unaltered. By contrast, the percentages of 18:0 and total fatty aldehyde increased significantly. Phospholipid extracts from all dystrophic samples showed a significant decrease in 16:0 and an increase in 18:1 as compared with the normal.  相似文献   

8.
Muscle spindles from the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of genetically dystrophic mice of the dy2J/dy2J strain were compared with age-matched normal animals at neonatal ages of 1-3 weeks according to histochemical, quantitative, and ultrastructural parameters. Intrafusal fibers in both the soleus and EDL exhibited similar regional differences in myosin ATPase activity, and conformed to those noted previously in various adult species. In distal polar regions, all nuclear bag fibers resembled extrafusal fibers of the type 1 variety, whereas in capsular zones they could be divided into two subtypes. Nuclear chain fibers possessed a staining pattern similar to type 2 extrafusal fibers, and in contrast to the bag fibers they exhibited no regional variations. These features were consistently observed in both the normal and dystrophic muscles at all ages. Spindles varied only slightly in their number and distribution in the two types of muscle, and their location followed the neurovascular branching pattern in each. Irrespective of age or genotype, spindles in the soleus were more homogeneously dispersed, but those in the EDL were concentrated along the dorsal aspect of the muscle. No significant differences were noted in the total number of spindles between normal and dystrophic muscles. In addition, no dramatic differences were observed in the muscle spindle index for soleus and EDL. The first obvious disease-related changes were noted in extrafusal fibers of the soleus of 3-week-old mice, and spindles were often located close to these areas of fiber degeneration. Despite alterations in the surrounding tissue, however, spindles appeared morphologically unaltered in dystrophy. These observations indicate that intrafusal fibers of spindles in neonatal mice appear enzymatically and histologically unaffected in incipient stages of progressive muscular dystrophy.  相似文献   

9.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

10.
D M Logan  R Battistella 《Steroids》1985,45(5):433-445
The concentrations of cholesterol esters in tissues of dystrophic chicken embryos are altered from normal. These changes are accompanied by significant changes in the proportions of the esterified fatty acids (the fatty acid profile). In serum and pectoral muscles there is a shift to a higher proportion of unsaturated fatty acids (in particular 18:1). Thigh muscle esters are little changed and in liver and brain the proportion of unsaturated fatty acids decreases.  相似文献   

11.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14- and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having approximately 32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (approximately 62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles.  相似文献   

12.
After hind limb suspension, a remodeling of postural muscle phenotype is observed. This remodeling results in a shift of muscle profile from slow-oxidative to fast-glycolytic. These metabolic changes and fiber type shift increase muscle fatigability. Acetyl-L-carnitine (ALCAR) influences the skeletal muscle phenotype of soleus muscle suggesting a positive role of dietary supplementation of ALCAR during unloading. In the present study, we applied a 2-D DIGE, mass spectrometry and biochemical assays, to assess qualitative and quantitative differences in the proteome of rat slow-twitch soleus muscle subjected to disuse. Meanwhile, the effects of ALCAR administration on muscle proteomic profile in both unloading and normal-loading conditions were evaluated. The results indicate a modulation of troponin I and tropomyosin complex to regulate fiber type transition. Associated, or induced, metabolic changes with an increment of glycolytic enzymes and a decreased capacity of fat oxidation are observed. These metabolic changes appear to be counteracted by ALCAR treatment, which restores the mitochondrial mass and decreases the glycolytic enzyme expression, suggesting a normalization of the metabolic shift observed in unloaded animals. This normalization is accompanied by a maintenance of body weight and seems to prevent a switch of fiber type.  相似文献   

13.
Inherited muscular dystrophy of the chicken is thought to arise from abnormal development of trophic regulation of skeletal muscles by their innervating nerves. To determine whether expression of muscular dystrophy in the chicken is a property of the nerves or of the muscles, wing limb buds were transplanted between normal and dystrophic chick embryos at 312 days of incubation (stage 19–20). Muscles of donor limbs innervated by nerves of the hosts were compared to contralateral unoperated host limb muscles in chicks from 6 to 25 weeks after hatching. Expression of normal or dystrophic phenotype was determined by examination of five different properties which are altered in dystrophic chick muscle: electromyographic evidence of myotonia; fiber diameter; acetylcholinesterase activity, localization, and isozymes; lactic dehydrogenase activity; and succinic dehydrogenase activity. Genetically normal muscle innervated by nerves of normal or dystrophic hosts was phenotypically normal while genetically dystrophic muscle innervated by normal nerves was phenotypically dystrophic. The results suggest that inherited muscular dystrophy of the chicken arises from a defect of muscle rather than from a lesion in the nerves themselves.  相似文献   

14.
Whole serum obtained from hypercholesterolemic rhesus monkeys was found to stimulate cholesterol esterification and cholesteryl ester accumulation in rhesus monkey arterial smooth muscle cells in culture to a significantly greater extent than normocholesterolemic serum. This was true even when the cholesterol concentration of the culture medium was equalized. Isolation and characterzation of the low density lipoproteins (LDL) from rhesus monkeys indicated that the LDL from hypercholesterolemic animals was 33% larger than LDL from normocholesterolemic animals due principally to an increase in the amount of cholesteryl ester per molecule. As a result, LDL from hypercholesterolemic animals transported over 50% more cholesterol per molecule than did normal LDL. The LDL of altered composition from hypercholesterolemic animals, when added to smooth muscle cells in culture, was nearly twice as effective in stimulating cholesterol esterification and cholesteryl ester accumulation than was LDL of normal composition. Results suggest that at least part of the exaggerated ability of whole hypercholesterolemic serum to stimulate the esterification and accumulation of cholesterol in cells in culture is due to the presence of LDL of altered composition.  相似文献   

15.
A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice   总被引:23,自引:0,他引:23  
Dystrophin-deficient muscles experience large reductions in expression of nitric oxide synthase (NOS), which suggests that NO deficiency may influence the dystrophic pathology. Because NO can function as an antiinflammatory and cytoprotective molecule, we propose that the loss of NOS from dystrophic muscle exacerbates muscle inflammation and fiber damage by inflammatory cells. Analysis of transgenic mdx mice that were null mutants for dystrophin, but expressed normal levels of NO in muscle, showed that the normalization of NO production caused large reductions in macrophage concentrations in the mdx muscle. Expression of the NOS transgene in mdx muscle also prevented the majority of muscle membrane injury that is detectable in vivo, and resulted in large decreases in serum creatine kinase concentrations. Furthermore, our data show that mdx muscle macrophages are cytolytic at concentrations that occur in dystrophic, NOS-deficient muscle, but are not cytolytic at concentrations that occur in dystrophic mice that express the NOS transgene in muscle. Finally, our data show that antibody depletions of macrophages from mdx mice cause significant reductions in muscle membrane injury. Together, these findings indicate that macrophages promote injury of dystrophin-deficient muscle, and the loss of normal levels of NO production by dystrophic muscle exacerbates inflammation and membrane injury in muscular dystrophy.  相似文献   

16.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

17.
We describe herein the effects of Marek's disease herpesvirus (MDV) on cholesterol and cholesteryl ester metabolism in cultured chicken arterial smooth muscle cells. Infection of arterial smooth muscle cells from specific pathogen-free chickens with MDV, but not a virus control, herpesvirus of turkeys led to a 7-10-fold increase in the accumulation of free and esterified cholesterol and a 2-fold increase in phospholipids. The cellular lipid changes observed in the MDV-infected arterial smooth muscle cells resulted, in part, from the following: decreased low-density lipoprotein-cholesteryl ester hydrolysis due to decreased lysosomal (acid) cholesteryl ester hydrolytic activity; increased de novo synthesis of cholesterol; decreased excretion of free cholesterol; and, both increased cholesteryl ester synthetic activity and decreased cytoplasmic (neutral) cholesteryl ester hydrolytic activity which resulted in increased incorporation of oleic acid into cholesteryl ester. Other changes noted in the MDV-infected cells as compared to uninfected cells included a 2-fold increase in both total protein synthesis and lysosomal and microsomal marker enzyme activities. These alterations in lipid and protein metabolism in MDV-infected arterial smooth muscle cells may explain in part our in vivo findings that herpesvirus (MDV) infection of specific pathogen-free chickens fed a normocholesterolemic diet will induce arterial thickening and lipid accumulation resembling human atherosclerosis.  相似文献   

18.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14 -and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having ~32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (~62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.  相似文献   

20.
Ca2+ ATPase and calcium binding proteins were studied in cardiac and skeletal muscles of normal and dystrophic mice. In normal and dystrophic mice, Ca2+ ATPase was quite reduced in cardiac muscle compared to skeletal muscle and was, unlike skeletal muscle, insensitive to orthovanadate. Ca2+ ATPase in skeletal muscle of dystrophic mice was reduced as compared to normal mice. In both cases (normal and dystrophic), calcium binding proteins were the same (identical molecular weight). The effect of 2 drugs (Polymixine B and Bepridil) which decrease protein bound calcium was studied: the muscle proteins of dystrophic mice did not present the same sensitivity to Bepridil as controls. These findings suggest the existence of a calcium-related defect in skeletal and cardiac muscle of dystrophic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号