首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria belongs to the most potent activators of the mammalian immune system. Its lipid moiety, lipid A, the 'endotoxic principle' of LPS, carries two negatively charged phosphate groups and six acyl chain residues in a defined asymmetric distribution (corresponding to synthetic compound 506). Tetraacyl lipid A (precursor IVa or synthetic 406), which lacks the two hydroxylated acyl chains, is agonistically completely inactive, but is a strong antagonist to bioactive LPS when administered to the cells before LPS addition. The two negative charges of lipid A, represented by the two phosphate groups, are essential for agonistic as well as for antagonistic activity and no highly active lipid A are known with negative charges other than phosphate groups. We hypothesized that the phosphate groups could be substituted by other negatively charged groups without changing the endotoxic properties of lipid A. To test this hypothesis, we synthesized carboxymethyl (CM) derivatives of hexaacyl lipid A (CM-506 and Bis-CM-506) and of tetraacyl lipid A (Bis-CM-406) and correlated their physicochemical with their endotoxic properties. We found that, similarly to compounds 506 and 406, also for their carboxymethyl derivatives a particular molecular ('endotoxic') conformation and with that, a particular aggregate structure is a prerequisite for high cytokine-inducing capacity and antagonistic activity, respectively. In other parameters such as acyl chain melting behaviour, antibody binding, activity in the Limulus lysate assay, and partially the binding of 3-deoxy-D-manno-oct-2-ulosonic acid transferase, strong deviations from the properties of the phosphorylated compounds were observed. These data allow a better understanding of endotoxic activity and its structural prerequisites.  相似文献   

2.
Lipid A analogues were chemically synthesized based on the model structure recently revised, and biological activities of the analogues were tested. The analogue, (beta-1,6)-linked glucosamine disaccharide carrying ester-bound 3-hydroxytetradecanoic acids at 3 and 3' position of reducing and nonreducing glucosamine in addition to amide-bound 3-hydroxytetradecanoic acids and glycosidic-linked and ester-linked phosphate groups, showed much stronger activities for mediator inducing and immunomodulating as well as endotoxic activities than those exhibited by the previously synthesized analogues based on the old model. Among the activities tested, induction of interferon and tumor necrosis factor as well as mitogenicity, adjuvanticity and pyrogenicity were, however, not expressed so strongly as natural lipid A used as controls. In contrast, the analogue exhibited comparable activities to those of control lipid A in the test of lethal toxicity to mice and gelating activity of Limulus amebocyte lysate. Other synthetic analogues carrying a phosphate group showed comparable, slightly stronger or weaker activities depending on the test, but nonphosphorylated analogue exhibited no apparent or only very weak activities.  相似文献   

3.
Lipopolysaccharides (LPS, endotoxin) represent a major virulence factor of Gram-negative bacteria, which can cause septic shock in mammals, including man. The lipid anchor of LPS to the bacterial outer membrane, lipid A, exhibits a peculiar chemical structure, harbours the 'endotoxic principle' of LPS and is also responsible for the expression of pathophysiological effects. Chemically modified lipid A can be endotoxically inactive, but may express strong antagonistic activity against endotoxically active LPS. By applying orientation measurements with attenuated total reflectance (ATR) infrared spectroscopy on hydrated lipid A samples, we show here that these different biological activities are directly correlated to the intrinsic conformation of lipid A. Bisphosphoryl-hexaacyl lipid A molecules with an asymmetric (4/2) distribution of the acyl chains linked to the diglucosamine backbone have a large tilt angle (> 45 degrees ) of the diglucosamine backbone with respect to the membrane surface, a conical molecular shape (larger cross-section of the hydrophobic than the hydrophilic moiety), and are endotoxically highly active. Monophosphoryl hexaacyl lipid A has a smaller tilt angle, and the conical shape is less expressed in favour of a more cylindrical shape. This correlates with decreasing endotoxic activity. Penta- and tetraacyl lipid A or hexaacyl lipid A with a symmetric acyl chain distribution (3/3) have a small tilt angle (< 25 degrees ) and a cylindrical shape and are endotoxically inactive, but may be antagonistic.  相似文献   

4.
Inhibitory effects of the endotoxic glycolipid from Salmonella minnesota R595 on hepatic drug-metabolizing enzyme activities in mice were investigated, and the depressor activity of the glycolipid in the enzyme systems was confirmed. Among degradation products of lipopolysaccharides tested, lipid A preparations derived from the mild acetic acid hydrolysates of lipopolysaccharides were the most active, but the lipid A fractions prepared from the hydrolysates with 1 N-HCl were almost inactive. A degraded polysaccharide fraction from E. coli lipopolysaccharide was inactive. The activities of the glycolipid and the lipid A preparation were markedly reduced by treatment with alkaline-hydroxylamine, mild alkali or hydrazine. The data showed that the lipid A moiety of the glycolipid may be responsible for the inhibitory activity on the hepatic drug-metabolizing enzyme systems.  相似文献   

5.
A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.  相似文献   

6.
Each of the aromatic, acidic and basic amino acid residues in HM-1 were separately substituted with alanine by site-directed mutagenesis. The mutant genes were successfully expressed in HM-1 resistant Saccharomyces cerevisiae. HM-1 gene analogues corresponding to the aromatic substitutions resulted in lower production of HM-1 analogues. In the case of the acidic amino acid residue and basic amino acid residue substitutions, some analogues were produced in the same amount as and exhibited similar killing activity to that of the wild type HM-1. But the H35A HM-1 analogue had completely lost the killing activity, and D44A, K21A, K46A, R82A, R85A and R86A HM-1 showed highly decreased killing activities. These results strongly indicate the importance of histidine-35, aspartic acid-44, lysine-21, lysine-46, and C-terminal arginine residues in HM-1 for the killing activity.  相似文献   

7.
A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli-type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity.  相似文献   

8.
A major problem in the development of vaccines against Gram-negative bacteria is the endotoxic -activity of lipopolysaccharide (LPS), which is determined by its lipid A moiety. Nevertheless, LPS would be an interesting vaccine component because of its immune-stimulating properties. In the present study, we have changed the fatty acid composition of Neisseria meningitidis LPS by replacing the lpxA gene of strain H44/76 with the Escherichia coli or Pseudomonas aeruginosa homologue. The majority of the O-linked 3-OH C12 in N. meningitidis lipid A was replaced by 3-OH C14 (strain HA01E) and 3-OH C10 (strain HA25P) respectively. Both strains, but most notably strain HA01E, had reduced amounts of LPS compared with the wild-type strain. In addition, growth was severely impaired for HA01E. The major outer membrane proteins were expressed normally. Outer membrane complexes of both strains normalized on their LPS content showed a 10-fold reduction in their ability to induce tumour necrosis factor (TNF)-alpha. Immunogenicity studies in BALB/c mice revealed that the adjuvant activity of the LPS was not affected. Thus, the replacement of the O-linked fatty acids in meningococcal lipid A results in immunogenic outer membranes with reduced endotoxic activity, more suitable for use in outer membrane vesicle vaccines.  相似文献   

9.
Antibodies recognizing the Re core or lipid A structures of lipopolysaccharide (LPS) derived from Salmonella minnesota R595 and Pseudomonas vesicularis JCM1477 were tested for the ability to neutralize the preparatory activity of endotoxin using the local Shwartzman reaction. Shwartzman-inducing activity of R595 LPS (Re-form) was strongly suppressed when the LPS was incubated with the rabbit anti-R595 antiserum or the purified IgG antibody which recognizes core region of the LPS. The antiserum also suppressed the preparatory activity of LPS from S. typhimurium SL1102 (Re) and Escherichia coli F515 (Re), but not that of either S. typhimurium LT-2 (S) LPS or R595 lipid A. Moreover, it was found that the murine monoclonal antibody (MAb), SmRe100G (IgG2a) which recognizes the core region of R595 LPS, significantly suppressed the preparatory activity of R595 LPS. Both conventional antibodies specific to R595 lipid A, which contains a 1,4'-bisphosphorylated beta-D-glucosaminyl-alpha-D-glucosamine disaccharide structure, and JCM1477 lipid A, which contains a monophosphorylated 3-amino-D-glucosamine disaccharide structure, neutralized the preparatory activity of homologous and a closely related lipid A, but not that of LPS. In addition, it was observed that MAb Sm5G (IgG2b) specific to enterobacterial lipid A preparations (especially R595 lipid A) neutralized the preparatory activity of R595 lipid A, although the effect was somewhat weak as compared with that of rabbit antiserum. These results suggest that anti-Re LPS antibody binding to the core of Re LPS is involved in suppressing the endotoxic activity of Re LPS, and that the direct binding of anti-lipid A antibody to some specific epitopes of lipid A is important in neutralizing the endotoxic activity.  相似文献   

10.
Aggregates are the biologically active units of endotoxin   总被引:7,自引:0,他引:7  
For the elucidation of the very early steps of immune cell activation by endotoxins (lipopolysaccharide, LPS) leading to the production and release of proinflammatory cytokines the question concerning the biologically active unit of endotoxins has to be addressed: are monomeric endotoxin molecules able to activate cells or is the active unit represented by larger endotoxin aggregates? This question has been answered controversially in the past. Inspired by the observation that natural isolates of lipid A, the lipid moiety of LPS harboring its endotoxic principle, from Escherichia coli express a higher endotoxic activity than the same amounts of the synthetic E. coli-like hexaacylated lipid A (compound 506), we looked closer at the chemical composition of natural isolates. We found in these isolates that the largest fraction was hexaacylated, but also significant amounts of penta- and tetraacylated molecules were present that, when administered to human mononuclear cells, may antagonize the induction of cytokines by biologically active hexaacylated endotoxins. We prepared separate aggregates of either compound 506 or 406 (tetraacylated precursor IVa), mixed at different molar ratios, and mixed aggregates containing both compounds in the same ratios. Surprisingly, the latter mixtures showed higher endotoxic activity than that of the pure compound 506 up to an admixture of 20% of compound 406. Similar results were obtained when using various phospholipids instead of compound 406. These observations can only be understood by assuming that the active unit of endotoxins is the aggregate. We further confirmed this result by preparing monomeric lipid A and LPS by a dialysis procedure and found that, at the same concentrations, only the aggregates were biologically active, whereas the monomers showed no activity.  相似文献   

11.
Pseudomonas diminuta LPS with a new endotoxic lipid A structure   总被引:5,自引:0,他引:5  
Lipid A that contains mainly 2,3-diamino-2,3-dideoxy-D-glucose, phosphate and fatty acids in the molar ratio 2:1:5-6 was found in Pseudomonas diminuta lipopolysaccharide. The lipid A was considered to have a diamino-sugar disaccharide structure that carries a nonglycosidic phosphomonoester group and amide-bound acyloxyacyl and 3-hydroxy fatty acyl groups. The lipopolysaccharide exhibited endotoxic activities including lethal toxicity, pyrogenicity, local Shwartzman activity, body weight-decreasing toxicity and Limulus activity. The free lipid A was also endotoxic.  相似文献   

12.
Immunofluorescence, quantitative immunoprecipitation, and inhibition of bacterial agglutination and passive hemagglutination indicate that cross-reactive antigenic determinants are present on the surface of Rhizobium trifolii and clover roots. These determinants are immunochemically unique to this Rhizobium-legume cross-inoculation group. The multivalent lectin trifoliin and antibody to the clover root antigenic determinants bind competitively to two acidic heteropolysaccharides isolated from capsular material of R. Trifolii 0403. The major polysaccharide is an antigen which lacks heptose, 2-keto-3-deoxyoctulosonic acid, and endotoxic lipid A. The minor polysaccharide in the capsular material of R. Trifolii 0403 contains the same antigen in addition to heptose, 2-keto-3-deoxyoctonate, and lipid A. The acidic polysaccharides of two strains of R. trifolii share the clover r-ot cross-reactive antigenic determinant despite other differences in their carbohydrate composition. Studies with monovalent antigen-binding fragments of anti-clover root antibody and Azotobacter vinelandii hybrid transformants carrying the unique antigenic determinant suggest that these polysaccharides bind R. trifolii to the clover root hair tips which contain trifoliin.  相似文献   

13.
Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus   总被引:11,自引:0,他引:11  
AIMS: In a search for an antifungal peptide with a high activity against Aspergillus flavus, Bacillus subtilis AU195 was selected from a collection of isolates with antagonistic activity against A. flavus. METHODS AND RESULTS: To identify the antifungal peptides, a protein purification scheme was developed based on the detection of the antifungal activity in purified fractions against A. flavus. Two lipopeptides were purified with anion exchange and gel filtration chromatography. Their masses were determined to be 1045 and 1059 m/z with mass spectrometry, and their peptide moiety was identical to bacillomycin D. CONCLUSION: AU195 synthesized a mixture of two antifungal bacillomycin D analogues with masses of 1045 and 1059, the 14 mass unit difference representing the difference between a C15 and a C16 lipid chain. SIGNIFICANCE AND IMPACT OF THE STUDY: Both bacillomycin D analogues were active at the same concentration against A. flavus, but the different lipid chain length apparently affected the activity of the lipopeptide against other fungi.  相似文献   

14.
The longitudinal muscle of isolated rat ileum is a sensitive bioassay suitable for testing compounds with antagonistic effects on the B(1) receptor. Bradykinin analogues with replacement of proline by alkyl-substituted phenylalanine at position 7 are effective on this receptor as entire molecules and have a stronger antagonistic effect than on the B(2) receptor. A corresponding desArg(9)-compound has a specific effect on the B(1) receptor and a very high antagonistic potency. [LNMPhe(2)]bradykinin as a compound without any replacement at position 7 or 8 shows antagonistic activity as well.  相似文献   

15.
The lipid A from nitrogen-fixing bacterial species Rhizobium sin-1 is structurally unusual due to lack of phosphates and the presence of a 2-aminogluconolactone and a very long chain fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0), moiety. This structurally unusual lipid A can antagonize TNF-alpha production by human monocytes induced by Escherichia coli LPS. To establish the relevance of the unusual long chain 27-hydroxyoctacosanoic acid for antagonistic properties, a highly convergent strategy for the synthesis of several derivatives of the lipid A of R. sin-1 has been developed. Compound 1 is a natural R. sin-1 lipid A having a 27-hydroxyoctacosanoic acid at C-2', compound 2 contains an octacosanoic acid moiety at this position, and compound 3 is modified by a short chain tetradecanoic acid. Cellular activation studies with a human monocytic cell line have shown that the octacosanoic acid is important for optimal antagonistic properties. The hydroxyl of the natural 27-hydroxyoctacosanoic moiety does, however, not account for inhibitory activity. The resulting structure-activity relationships are important for the design of compounds for the treatment of septic shock.  相似文献   

16.
The main goal of the present study was to evaluate the comparative effectiveness of tetrapyrrol photosensitizers (protoporphyrine IX and chlorine e6) in red (632.8 nm) and green (532.5) spectrum bands on rat blood free radical status, using the experimental model of endotoxic shock. Endotoxic shock was produced by intraperitoneal injection of lipopolysaccharide B. Irradiation effectiveness was estimated by leukocyte activation (measured with luminol-dependent chemiluminescence), superoxide dismutase activity of blood plasma (nitro blue tetrasolium assay) and lipid peroxidation (assay with cis-parinaric acid). It was found that laser irradiation has multidirectional effects on leukocyte activation, membrane lipid peroxidation and plasma SOD activity and all these effects were more pronounced in the case of endotoxic shock. Protoporphyrin was more effective in leukocyte activation and chlorine e6 demonstrated maximal effects on blood SOD activity.  相似文献   

17.
It was previously reported that acylation of the N-terminus of several known B(2) antagonists with various types of bulky acyl groups consistently improved their antagonistic potency in the rat blood pressure assay. On the other hand, earlier results seem to suggest that the effects of acylation on the contractility of isolated rat uterus depend substantially on the chemical character of the acyl group, as it was observed that this modification may either change the range of antagonism or even transform it into agonism. Bearing all this in mind, three new analogues of bradykinin were designed by modifying the moderately potent B(2) antagonist, previously synthesized by Stewart's group, D-Arg-Arg-Pro-Hyp-Gly-Thr-Ser-D-Phe-Thi-Arg. New analogues were obtained by acylation of the N-terminus of the above peptide with succinic acid, 12-aminododecanoic acid and 4-aminobenzoic acid in order to confirm whether either the positive or the negative charge on the N-terminal end of the peptide is responsible for the transformation of activity. The activity of analogues was assessed on blood pressure and in uterotonic in vitro tests. The modifications proposed either preserved or increased the antagonistic potency in the rat blood pressure test. On the other hand, the three substituents, depending on their chemical character, differently influenced the interaction with the rat uterine receptors. The results may be of value in the design of new B(2) agonists and antagonists.  相似文献   

18.
A number of benzoic acid analogues showed antifungal activity against strains of Aspergillus flavus, Aspergillus fumigatus and Aspergillus terreus, causative agents of human aspergillosis, in in vitro bioassays. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased by addition of a methyl, methoxyl or chloro group at position 4 of the aromatic ring, or by esterification of the carboxylic acid with an alkyl group, respectively. Thymol, a natural phenolic compound, was a potent chemosensitizing agent when co-applied with the antifungal azole drugs fluconazole and ketoconazole. The thymol-azole drug combination demonstrated complete inhibition of fungal growth at dosages far lower than the drugs alone. Co-application of thymol with amphotericin B had an additive effect on all strains of aspergilli tested with the exception of two of three strains of A. terreus, where there was an antagonistic effect. Use of two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus, sakAΔ and mpkCΔ, having gene deletions in the oxidative stress response pathway, indicated antifungal and/or chemosensitization activity of the benzo analogues was by disruption of the oxidative stress response system. Results showed that both these genes play overlapping roles in the MAPK system in this fungus. The potential of safe, natural compounds or analogues to serve as chemosensitizing agents to enhance efficacy of commercial antifungal agents is discussed.  相似文献   

19.
Capnocytophaga canimorsus is a usual member of dog''s mouths flora that causes rare but dramatic human infections after dog bites. We determined the structure of C. canimorsus lipid A. The main features are that it is penta-acylated and composed of a “hybrid backbone” lacking the 4′ phosphate and having a 1 phosphoethanolamine (P-Etn) at 2-amino-2-deoxy-d-glucose (GlcN). C. canimorsus LPS was 100 fold less endotoxic than Escherichia coli LPS. Surprisingly, C. canimorsus lipid A was 20,000 fold less endotoxic than the C. canimorsus lipid A-core. This represents the first example in which the core-oligosaccharide dramatically increases endotoxicity of a low endotoxic lipid A. The binding to human myeloid differentiation factor 2 (MD-2) was dramatically increased upon presence of the LPS core on the lipid A, explaining the difference in endotoxicity. Interaction of MD-2, cluster of differentiation antigen 14 (CD14) or LPS-binding protein (LBP) with the negative charge in the 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) of the core might be needed to form the MD-2 – lipid A complex in case the 4′ phosphate is not present.  相似文献   

20.
The main goal of the present study was to evaluate the comparative effectiveness of tetrapyrrol photosensitizers (protoporphyrine IX and chlorine e 6) in red (632.8 nm) and green (532.5) spectrum bands on rat blood free radical status, using the experimental model of endotoxic shock. Endotoxic shock was produced by intraperitoneal injection of lipopolysaccharide B. Irradiation effectiveness was estimated by leukocyte activation (measured with luminol-dependent chemiluminescence), superoxide dismutase activity of blood plasma (nitro blue tetrasolium assay) and lipid peroxidation (assay with cis-parinaric acid). It was found that laser irradiation has multidirectional effects on leukocyte activation, membrane lipid peroxidation and plasma SOD activity and all these effects were more pronounced in the case of endotoxic shock. Protoporphyrin was more effective in leukocyte activation and chlorine e 6 demonstrated maximal effects on blood SOD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号