首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   

2.
Solid-state cross-polarisation/magic-angle-spinning3C nuclear magnetic resonance (CP/MAS13C NMR) spectroscopy was used to characterise semi-quantitatively the organic materials contained in particle size and density fractions isolated from five different mineral soils: two Mollisols, two Oxisols and an Andosol. The acquired spectra were analysed to determine the relative proportion of carboxyl, aromatic, O-alkyl and alkyl carbon contained in each fraction. Although similar types of carbon were present in all of the fractions analysed, an influence of both soil type and particle size was evident.The chemical structure of the organic materials contained in the particle size fractions isolated from the Andosol was similar; however, for the Mollisols and Oxisols, the content of O-alkyl, aromatic and alkyl carbon was greatest in the coarse, intermediate and fine fractions, respectively. The compositional differences noted in progressing from the coarser to finer particle size fractions in the Mollisols and Oxisols were consistent with the changes noted in other studies where CP/MAS13C NMR was used to monitor the decomposition of natural organic materials. Changes in the C:N ratio of the particle size fractions supported the proposal that the extent of decomposition of the organic materials contained in the fine fractions was greater than that contained in the coarse fractions. The increased content of aromatic and alkyl carbon in the intermediate size fractions could be explained completely by a selective preservation mechanism; however, the further accumulation of alkyl carbon in the clay fractions appeared to result from both a selective preservation and anin situ synthesis.The largest compositional differences noted for the entire organic fraction of the five soils were observed between soil orders. The differences within orders were smaller. The Mollisols and the Andosol were both dominated by O-alkyl carbon but the Andosol had a lower alkyl carbon content. The Oxisols were dominated by both O-alkyl and alkyl carbon.A model describing the oxidative decomposition of plant materials in mineral soils is proposed and used to explain the influence of soil order and particle size on the chemical composition of soil organic matter in terms of its extent of decomposition and bioavailability.  相似文献   

3.
Conformational transitions of human calcitonin (hCT) during fibril formation in the acidic and neutral conditions were investigated by high-resolution solid-state 13C NMR spectroscopy. In aqueous acetic acid solution (pH 3.3), a local alpha-helical form is present around Gly10 whereas a random coil form is dominant as viewed from Phe22, Ala26, and Ala31 in the monomer form on the basis of the 13C chemical shifts. On the other hand, a local beta-sheet form as viewed from Gly10 and Phe22, and both beta-sheet and random coil as viewed from Ala26 and Ala31 were detected in the fibril at pH 3.3. The results indicate that conformational transitions from alpha-helix to beta-sheet, and from random coil to beta-sheet forms occurred in the central and C-terminus regions, respectively, during the fibril formation. The increased 13C resonance intensities of fibrils after a certain delay time suggests that the fibrillation can be explained by a two-step reaction mechanism in which the first step is a homogeneous association to form a nucleus, and the second step is an autocatalytic heterogeneous fibrillation. In contrast to the fibril at pH 3.3, the fibril at pH 7.5 formed a local beta-sheet conformation at the central region and exhibited a random coil at the C-terminus region. Not only a hydrophobic interaction among the amphiphilic alpha-helices, but also an electrostatic interaction between charged side chains can play an important role for the fibril formation at pH 7.5 and 3.3 acting as electrostatically favorable and unfavorable interactions, respectively. These results suggest that hCT fibrils are formed by stacking antiparallel beta-sheets at pH 7.5 and a mixture of antiparallel and parallel beta-sheets at pH 3.3.  相似文献   

4.
13C NMR was used to study the effect of oxygen on methanol oxidation by a type II methanotrophic bacterium isolated from a bioreactor in which methane was used as electron donor for denitrification. Under high (35–25%) oxygen conditions the first step of methanol oxidation to formaldehyde was much faster than the following conversions to formate and carbon dioxide. Due to this the accumulation of formaldehyde led to a poisoning of the cells. A more balanced conversion of 13C-labelled methanol to carbon dioxide was observed at low (1–5%) oxygen concentrations. In this case, formaldehyde was slowly converted to formate and carbon dioxide. Formaldehyde did not accumulate to inhibitory levels. The oxygen-dependent formation of formaldehyde and formate from methanol is discussed kinetically and thermodynamically. Journal of Industrial Microbiology & Biotechnology (2001) 26, 9–14. Received 04 March 2000/ Accepted in revised form 07 November 2000  相似文献   

5.
Heo KS  Hyun MH  Cho YJ  Ryoo JJ 《Chirality》2011,23(4):281-286
(R)-N-3,5-dinitrobenzoyl (DNB) leucine derived chiral selector was used as an HPLC chiral stationary phase for the resolution of various racemic amino acids derivatives. In this study, determination of optical purity of an amino acid derivative was performed by chiral high performance liquid chromatography and 1H and 13C NMR spectroscopy by using the DNB leucine derived chiral selector. The accuracy and precision of each optical purity value are calculated and the data are compared to each other.  相似文献   

6.
Summary Nearly complete assignment of the protonated carbon resonances of apo-neocarzinostatin, 113-amino acid antitumor antibiotic carrier protein, has been achieved at natural 13C abundance using heteronuclear 2D experiments. Most of the cross peaks in the proton-carbon correlation map were identified by the combined use of HMQC, HMQC-RELAY and HMQC-NOESY spectra, using already published proton chemical shifts. However, double-DEPT and triple-quantum experiments had to be performed for the edition of CH and CH2 side-chain groups, respectively, which were hardly visible on HMQC-type maps. The triple-quantum pulse sequence was adapted from its original scheme to be applicable to a natural abundance sample. The correlation between carbon chemical shifts and the apo-neocarzinostatin structure is discussed. In particular, 13C alpha secondary shifts correlate well with the backbone conformation. These shifts also yield information about the main-chain flexibility of the protein. Assignments reported herein will be used further for interpretation of carbon relaxation times in a study of the internal dynamics of apo-neocarzinostatin.  相似文献   

7.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

8.
In Central Europe, composting and anaerobic digestion of municipal solid waste (MSW) is used as pretreatment before landfilling to reduce landfill emissions. MSW samples were analyzed before, during, and after pretreatment to assess the stability of the organic matter. Chemolytic, nuclear magnetic resonance (NMR) spectroscopic, and respiration parameters were correlated to evaluate a substitution of the time-consuming respiration analysis by chemical parameters. 13C cross polarization magic angle spinning (CPMAS) NMR spectroscopy showed a preferential biodegradation of O-alkyl carbon (carbohydrates) and a selective accumulation of plastics during all pretreatments, confirming findings from chemolytic analyses. Principal component analysis exhibited a strong association between the respiration rate, the carbohydrate content, and the O-alkyl C content, corroborating that carbohydrates are the most important compounds of MSW with regard to the emission potential. Rank correlation (Spearman) also showed strong relationships between the respiration rate and the content of carbohydrates (r=0.75) and of O-alkyl C (r=0.72). Journal of Industrial Microbiology & Biotechnology (2001) 26, 83–89. Received 20 April 2000/ Accepted in revised form 21 July 2000  相似文献   

9.
Rotational frame nuclear Overhauser effect spectroscopy (ROESY) and (13)C NMR measurements were carried out to study the molecular interaction between maltodextrin, a digestive byproduct of starch, and an anionic surfactant. Significant differences in chemical shifts were observed when sodium dodecyl sulfate (SDS) was introduced into the maltodextrin (DE 10) solutions. (13)C NMR measurement indicated that there were downfield shifts and broadening of peaks, especially in the region of 75-81 and 100-103 ppm, which were assigned to carbons 1 and 4 of the d-glucopyranose residues of maltodextrin, respectively. ROESY spectra indicated cross-peaks between the SDS and maltodextrin protons. These peaks can arise only in the case of the designated SDS protons and maltodextrin protons being less than 0.5 nm apart for a substantial period of time. The most intense cross-peaks are those between the central CH(2) protons of SDS near 1.2 ppm and the maltodextrin protons ranging from 3.5 to 3.9 ppm. The SDS-H3 CH(2) protons were resolved from the bulk of the SDS protons, with peaks and shoulders at 1.25 ppm, which indicated an especially strong interaction of the SDS hydrophobic tail with MD6 and some less intense interactions with MD2, 4, and 5.  相似文献   

10.
11.
Introduction – The two enantiomers of hyoscyamine, an alkaloid found in many plant species, have distinct pharmacological and biological properties. Methods for the discrimination of both enantiomers are almost exclusively based on chiral HPLC/UV. Determination of the enantiomeric ratio (e.r.) of hyoscyamine is a challenging problem since this compound tends to racaemise, forming atropine during acid–base extraction. Objective – To develop a protocol for the calculation of enantiomeric ratio of hyoscyamine in a plant extract using a 13C NMR method. Methodology – Samples were prepared by extraction of dried Datura stramonium seeds. Observation of C12 and C15 NMR signals of hyoscyamine in the presence of one equivalent of TFA and sub‐stoichiometric amount of Yb(hfc)3 allowed the calculation of the e.r. of S‐(?) and R‐(+)‐hyoscyamine. Results – The method was optimised with various mixtures of (+) and (?)‐hyoscyamine ranging from 50:50 (racaemic mixture, i.e. atropine) to 98.5:1.5. The e.r. measured by NMR on the signals of aromatic C12 and C15 were in agreement with the gravimetrically prepared samples. The method was then applied to an extract of Datura stramonium and S‐(?)‐hyoscyamine was the unique enantiomer. Conclusion – The study showed that the e.r. determination of atropine/hyoscyamine was achieved with a routine NMR spectrometer, using CLSR/TFA on pure compounds as well as on the crude extract of Datura stramonium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The surface dynamics of bacteriorhodopsin was examined by measurements of site-specific 13C–1H dipolar couplings in [3-13C]Ala-labeled bacteriorhodopsin. Motions of slow or intermediate frequency (correlation time <50 µs) scale down 13C–1H dipolar couplings according to the motional amplitude. The two-dimensional dipolar and chemical shift (DIPSHIFT) correlation technique was utilized to obtain the dipolar coupling strength for each resolved peak in the 13C MAS solid-state NMR spectrum, providing the molecular order parameter of the respective site. In addition to the rotation of the Ala methyl group, which scales the dipolar coupling to 1/3 of the rigid limit value, fluctuations of the C–C vector result in additional motional averaging. Typical order parameters measured for mobile sites in bacteriorhodopsin are between 0.25 and 0.29. These can be assigned to Ala103 of the C–D loop and Ala235 at the C-terminal -helix protruded from the membrane surface, and Ala196 of the F–G loop, as well as to Ala228 and Ala233 of the C-terminal -helix and Ala51 from the transmembrane -helix. Such order parameters departing significantly from the value of 0.33 for rotating methyl groups are obviously direct evidence for the presence of fluctuation motions of the Ala C–C vectors of intact preparations of fully hydrated, wild-type bacteriorhodopsin at ambient temperature. The order parameter for Ala160 from the expectantly more flexible E–F loop, however, is unavailable under highest-field NMR conditions, probably because increased chemical shift anisotropy together with intrinsic fluctuation motions result in an unresolved 13C NMR signal.  相似文献   

13.
Chitin, an important constituent of the exoskeleton of many organisms such as crustacea and insects, and its derivates promote the ordered healing of tissues and are therefore very suitable for use in wound dressings. The degree of substitution (DS) is an important parameter when assessing the conversion of chitin into one of its derivates. The degree of acetylation of chitin and chitosan and the degree of butyrylation of dibutyrylchitin was evaluated. It is found that FT-IR spectroscopy is a relatively easy but indirect way of determining the DS. FT-IR spectroscopy proved to be very useful for comparing the degrees of conversion and -substitution, as well as for differentiating between different chitin types. Absolute DS determinations by FT-IR however are only reliable when a calibration, using a direct technique such as 13C-NMR, is made.  相似文献   

14.
Trinsoutrot  I.  Jocteur Monrozier  L.  Cellier  J.  Waton  H.  Alamercery  S.  Nicolardot  B. 《Plant and Soil》2001,234(1):61-72
The biochemical composition of stems, pod walls and roots of oilseed rape (Brassica napus L.) plants, grown in a growth chamber with two levels of N fertiliser, was assessed by two global methods, i.e., serial extraction with the Van Soest's technique and temperature-programmed pyroanalysis (TP-Py). Statistical analysis of the effect of various parameters on the proportion of soluble components, hemicellulose, cellulose and lignin-like components in oilseed rape organs showed that the composition of plant materials depended on the N nutrition conditions during plant growth. Contents of soluble and hemicellulose fractions were affected by the technique used. Elsewhere, both global techniques resulted in similar proportions of skeletal cellulose (respectively 41 and 36% in low and high N stems, 37 and 30% in low and high N pod walls, 32 and 29% in low and high N roots) and of lignin-like components which ranged from about 7% in high N stems and pod walls to 16% in low N roots. Spectroscopy by FTIR showed a significant band at 1650 cm–1 (amide I in proteins) in the root material (organ with the lowest C/N ratio) and the absence of lignin-specific bands. Carbon distribution by 13C NMR CP/MAS of labelled plants indicated that 60–64% was (cellulose + hemicellulose)-C, close to the values obtained by global methods. The proportion of aromatic-C (110–160 ppm) and phenolic ether was higher in roots than in stems and pod walls. Organs from oilseed rape plants with higher N contents exhibited a larger proportion of C in the 171 ppm chemical shift attributed to the peptide bond. The concomitance of a high level of aromatic and proteinaceous components in roots would reveal the presence of tannin–protein complexes in addition with true lignin.  相似文献   

15.
Because starch crystallinity influences the physical, mechanical, and technological aspects of numerous starch-based products during production and storage, rapid techniques for its assessment are vital. Samples of different levels of crystallinity were obtained by debranching gelatinized cassava starch, followed by subjection to various hydrothermal treatments. The recrystallized products were further subjected to partial hydrolysis with a mixture of α-amylase and glucoamylase prior to freeze-drying. Crystallinities were determined using X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy, and correlated with FT-Raman spectra features. XRD crystallinities ranged between 0 and 58%, and agreed with crystalline-phase fractions (R2 = 0.99) derived from the respective 13C CP/MAS NMR spectra. A strong linear correlation was found between crystallinities and integrated areas of the skeletal mode Raman band at 480 cm−1 (R2 = 0.99). With appropriate calibration, FT-Raman spectroscopy is a promising tool for rapid determination of starch crystallinity.  相似文献   

16.
17.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

18.
13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane αII-helices. Surprisingly, the 13C NMR spectra of [3-13C]Ala-D85N turned out to be very similar to those of [3-13C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane αII-helices of the M-like state are suppressed already by fluctuation motions in the order of 104-105 Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic α-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane α-helices followed by Pro residues in [1-13C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-13C]Val and [3-13C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

19.
We developed a method for the direct identification and quantification of carbohydrates in raw vegetable extracts using (13)C NMR spectroscopy without any preliminary step of precipitation or reduction of the components. This method has been validated (accuracy, precision and response linearity) using pure compounds and artificial mixtures before being applied to authentic ethanolic extracts of pine needles, pine wood and pine cones and fir twigs. We determined that carbohydrates represented from 15% to 35% of the crude extracts in which pinitol was the principal constituent accompanied by arabinitol, mannitol, glucose and fructose.  相似文献   

20.
The single-crystal X-ray diffraction and high-resolution 1H and 13C NMR spectral data for the title compound are reported. The influence of the ring oxygen atom on the J(1,2e) and J(4,5) coupling constants for 2-deoxy-D-lyxo- and -D-xylo-hexopyranosides is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号