首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The accuracy of most of the published values for guard cell osmotic pressures is disputed and it is considered that many values are grossly in error. Since most of the values were obtained from incipient plasmolysis experiments limitations of the technique were investigated. It was concluded that it is not possible to use the incipient plasmolysis method for accurately determining guard cell osmotic pressures since all concentrations of plasmolytica (concentrations down to 0.1 M sucrose or calcium nitrate were used) bring about incipient plasmolysis depending on the period of time the tissue is immersed in the plasmolytica. In other words, the concentration of a plasmolyticum at which incipient plasmolysis occurs continues to decrease as the plasmolysing time increases. Furthermore, the time taken for incipient plasmolysis to occur varies according to the solutes in the plasmolyticum and the extent of stomatal aperture.A reason for the changing values of guard cell osmotic pressures was the loss of K+, and to a lesser extent, Cl, Ca2+ and Na+, and sugars and organic acids from the tissue during exposure to graded concentrations of plasmolytica (sucrose and calcium nitrate). A good correlation between loss of solutes from the epidermal tissue and decrease in guard cell osmotic pressure was not observed, however.Histochemical tests for K+ support the view that leakage of K+ from the guard cells occurs while the tissue is immersed in the plasmolytica except when high concentrations of sucrose (2.0 M) and calcium nitrate (greater than 1.0 M) were used and then leakage was minimal. However, these high concentrations of plasmolytica caused cell damage.The osmotic relationships of the various cell types within the epidermis ofCommelina communis were investigated during stomatal movements. Although absolute values for the osmotic pressures of the various cell types could not be evaluated it was apparent from the rates of changes of the osmotic pressures that when stomata closed guard cell osmotic pressures decreased while epidermal and subsidiary cell osmotic pressures increased to almost the same values as the guard cells.  相似文献   

2.
M. Kopp  P. Geoffroy  B. Fritig 《Planta》1979,146(4):451-457
Leaves of tobacco varieties carrying the N gene for hypersensitiviy react to tobacco mosaic virus (TMV) infection by forming necrotic lesions and by localizing the virus in the vicinity of these lesions. These changes are accompanied in the host by an increased metabolic activity, in particular by an increased production of phenolic compounds derived from phenylalanine. Necrogenesis apparently destroys cells which have become heavily infected despite this strong defense reaction. However, it has been demonstrated previously (Otsuki et al., 1972) that protoplasts derived from leaves which normally respond in vivo to virus inoculation by forming necrotic local lesions, show no such response when inoculated in vitro. In the present study we have investigated the effect of pre-infecting hypersensitive leaves with TMV on the production or the non-production of the factor(s) of necrosis at the level of either protoplasts or mesophyll cells isolated from these preinfected leaves. Phenylalanine ammonia-lyase (PAL), whose rate of synthesis has been shown (Duchesne et al., 1977) to increase in stimulated cells of infected leaves, was used as a biochemical marker in the search for the stimulus preceding necrogenesis. We found that this stimulus concerning PAL activity was never elicited in either protoplasts or mesophyll cells which were prepared just before the appearance of necrotic local lesions. This result did not depend on the conditions of pre-infection or on the methods used to isolate the protoplasts or mesophyll cells. We also assayed samples derived from pre-infected leaves that were already carrying local lesions, i.e., in which the stimulus and necrogenesis were already operating: not only did the isolated protoplasts and mesophyll cells not sustain the stimulus concerning PAL activity, but the stimulated enzyme activity decreased abruptly and, in most of the experiments, had disappeared within the time necessary for maceration. Evidence is presented showing that the non-elicitation or the abrupt decrease of stimulated PAL activity could not result from a selection of unstimulated cells or from a preferential destruction of stimulated cells during maceration of the leaves.Our results support the view that hypertonic osmotic pressure is responsible for the non-occurence of the hypersensitive response by acting according to one or both of the following processes: it suppresses the contacts through plasmodesmata between neighboring cells and, hence, it also suppresses the cell-to-cell diffusion of the factor(s) eliciting the stimulus; and/or since hypertonic osmotic pressure causes striking differences between leaf cells and protoplasts in total RNA and protein synthesis, these differences might include the suppression of synthesis of the elicitor of hypersensitivity.Abbreviations OMT O-methyltransferase - PAL phenylalanine ammonia-lyase - TMV Tobacco mosaic virus  相似文献   

3.
Mechanical injury of the plasmalemma As a possible pre requisite for virus infection of plants
A basic requirement of the infection in case of mechanical inoculation f viruses could be that the plasmalemma of cells is to be injured, for a clearance between cell wall and plasmalemma at the time of inoculation in cells, which are suitable for primary infection prevented the infection.
By means of the hypertonic concentration of 0.7 mol/l of the plasmolytica ethylenglycol, sucrose, glucose, sorbitol and mannitol, which permeate with different speeds, and by modifications of the mannitol treatment, a withdrawal of the plasmalemma to varied distances from the cell wall was induced in cell of the upper side of leaf disk from Nicotiana glutinosa and N tabacum "samsun" This could be observed microscopically in the leaf disks after embedding in liquid paraffin
Treated leaf disk were inoculated with tobacco mosaic virus and incubated floating on tap water
The infection rate, determined by the number of local lesions in case of leaf disks from Nicotiana glutinosa and by the extractable infectivity in case of "Samsun"proved to be dependent on the degree of withdrawal of the plasmalemma from the wall of cell of the upper disk side A strong withdrawal by rounding of the protoplasts in all or almost all cells, caused by the non permeating mannitol or sorbitol, did hardly permit infection  相似文献   

4.
The distribution of solutes in the various cells of sugar beet (Beta vulgaris L.) source leaves, petioles, and sink leaves was studied in tissue prepared by freeze-substitution. The differences in degree of cryoprotection indicated that sieve elements and companion cells of the source leaf, petiole, and sink leaf contain a high concentration of solute. The osmotic pressure of various types of cells was measured by observing incipient plasmolysis in freeze-substituted tissues equilibrated with a series of mannitol solutions prior to rapid freezing. Analysis of source leaf tissue revealed osmotic pressure values of 13 bars for the mesophyll and 30 bars for the sieve elements and companion cells. The osmotic pressure of the mesophyll of sink leaves was somewhat higher.  相似文献   

5.
The effects of arachidonic acid (AA) on the development of viral infection and the activity of phytohemagglutinins in Nicotiana tabacum L. plants were studied. Cv. Samsun NN was used, which displayed a genotypically determined hypersensitive response to tobacco mosaic virus (TMV) infection. When tobacco leaf disks were treated with 10–9 to –10–7 M AA, viral reproduction was suppressed by 90–100%. The AA concentration of 10–8 M was optimal for the improvement of plant virus resistance. Tobacco leaves maintained virus resistance for at least two weeks. Both AA treatment and TMV inoculation were accompanied by an enhanced lectin activity, which may indicate the involvement of lectins in the development of plant defense responses. Lectin accumulation was observed in the intact plants developing systemic resistance and in the detached leaves characterized by local resistance.  相似文献   

6.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

7.
Legrand  M.  Fritig  B.  Hirth  L. 《Planta》1978,144(1):101-108
Three distinct o-diphenol O-methyltransferases (OMTs) were found in leaves of Nicotiana tabacum, variety Samsun NN. They could be clearly distinguished by differences in elution pattern upon chromatography on DEAE-cellulose and in specificity towards 16 diphenolic substrates. The phenylpropanoids caffeic acid and 5-hydroxyferulic acid, whose importance as lignin precursors is well known, were the best substrates of OMT I, but they were also efficiently methylated by the two other OMTs that showed a broader substrate specificity. The highest rates of methylation were observed by assaying these latter enzymes with catechol, homocatechol and protocatechuic aldehyde. The flavonoid quercetin, the major o-diphenol of tobacco leaves, was a good substrate for OMTs II and III, but was also methylated significantly by OMT I. The tobacco OMTs showed both para-and meta-directing activities with protocatechuic acid, protocatechuic aldehyde and esculetin as substrates. Para-O-methylation of the former substrate arose almost exclusively from OMT I whereas that of the two latter substrates from all three enzymes. In healthy leaves the total O-methylating activity varied very much with the batch of plants whereas the relative contributions of the three enzymes were rather constant. On an average, OMTs I, II and III acounted towards caffeic acid, respectively. In tobacco mosaic virus-infected leaves carrying local necrotic lesions we found the same three OMTs with the same substrate specificities, but with increased activities. The degree of stimulation of both OMTs II and III was 2–3 times greater than that of OMT I when the leaves had a moderate number of lesions, and 3–5 times greater with large number of lesions. It is very likely that the changes in both the pattern of the O-methylating enzymes and the concentrations of the naturally occuring o-diphenolic substrates are related to an increased biosynthesis of lignins and of lignin-like compounds. These aromatic polymers could be involved in the cell wall thickening associated with the hypersensitive reaction and with the resistance to virus spread that occur in the cells surrounding the local lesions.Abbreviations OMT O-methyltransferase - TMV tobacco mosaic virus - SAM S-adenosyl-L-methionine  相似文献   

8.
In tobacco (Nicotiana tabacum L.) plants of hypersensitive cv. Samsun NN, a capability of necrosis lesion formation and protein patterns were studied after induction of antiviral resistance by defense responses activators (DRA) (arachidonic acid, ubiquinone 50, and vitamin E) and by infection with tobacco mosaic virus (TMV). DRA and TMV improved both local and systemic leaf resistance to TMV. Native protein electrophoresis demonstrated differences in the composition of leaf proteins extracted under acidic and alkaline conditions. SDS-PAGE revealed proteins accumulated during the development of systemic antiviral resistance after lower leaf treatments with DRA and of local resistance induced by pretreatment with TMV. It was shown that various DRA affected protein patterns similarly, whereas TMV infection resulted in other changes. It is supposed that different pathways function in tobacco plants during induction of systemic resistance by DRA and TMV infection.  相似文献   

9.
Tobacco plants were transformed with the open reading frame 3 gene from Potato virus X (PVX) coding for the p12 protein. Although the transgenic plants exhibited a normal morphological aspect, microscopic examination revealed extensive alterations in leaf tissue structure. After being challenged with PVX, the transgenic plants showed resistance to PVX infection and formation of specific leaf symptoms consisting of concentric rings encircled by necrotic borders. These novel symptoms were accompanied by biochemical changes normally associated with the hypersensitive response (HR) and were absent in noninfected transgenic plants or in PVX-infected nontransgenic plants. No equivalent virus resistance was observed after inoculation with Tobacco mosaic virus or Potato virus Y, suggesting the presence of a specific resistance mechanism. Despite development of HR-like symptoms, systemic acquired resistance was not induced in PVX-infected p12 transgenic plants. No evidence of an RNA-mediated resistance mechanism was found.  相似文献   

10.
The mRNAs encoding orthodiphenol-O-methyltransferases (OMTs; EC 2.1.1.6), which are involved in the biosynthesis of lignin precursors, are highly induced in tobacco leaves during the hypersensitive reaction to tobacco mosaic virus (TMV). OMT messengers were fractionated on a sucrose gradient and translated in vitro. Protein A-Sepharose columns adsorbed with specific antisera raised against purified OMTs were used to select translation products, and the translatable activity of OMT mRNA was measured at different stages of infection. Oligonucleotides derived from peptide sequences of purified OMT I were used to prime polymerase chain reactions; total RNA was used as template to allow the isolation of an OMT I clone. RNA blots, hybridized with the OMT I probe, revealed a unique messenger of 1.7 kb. The kinetics of accumulation of OMT I mRNAs during the hypersensitive reaction to TMV parallels the kinetics of translation and suggests that an increase in mRNA controls the increase in the rate of enzyme synthesis. In healthy plants, RNA blot hybridization showed that the steady-state level of OMT I mRNA is very high in vascular tissue compared to the level measured in leaves.  相似文献   

11.
Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.

When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO3, 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  相似文献   

12.
Illuminated leaf discs of Vicia faba were brought into equilibrium with a series of mannitol solutions. The width of stomatal aperture and the osmotic potential of guard cells and epidermal cells were determined. It was found that the maximal aperture was obtained when epidermal cells were at about incipient plasmolysis and that any increase in their turgor pressure brought about a decrease in stomatal aperture. These findings emphasize the importance of epidermal cells in determining the width of the stomatal pore.  相似文献   

13.
After infection ofNicotiana tabacum cv. Samsun with tobacco mosaic virus (TMV) crude extracts from dark-green spots of upper leaves had a more strongly marked inhibitory effect upon TMV addedin vitro than crude extracts from the surrounding light-green tissue. Likewise, crude extracts from leaves ofNicotiana tabacum cv. Samsun showing recovery after infection with tobacco ringspot virus (TRV) were seen to have a marked inhibitory effect on TMV addedin vitro. The results obtained suggest that virus inhibitors are produced after virus infections not only in hypersensitive hosts but also in systemic hosts. Necrotizing processes are not an indispensable prerequisite of the production of virus-induced virus inhibitors.  相似文献   

14.
This study reports the extent and character of plasmolysis and other morphological changes as shown by electron microscopy in a strain of Klebsiella pneumoniae and with sucrose or polyethylene glycol 400 (PEG-400) as the plasmolysing agent at a water activity of 0.935.
Both solutes produced severe plasmolysis in K. pneumoniae cells; PEG-400 also caused some cell wall collapse and fingerlike extrusions to emerge from the bacterial cell.  相似文献   

15.
Abstract. Glutaraldehyde fixation was used to determine the solute concentrations in the various cell types present in tissue cultures of squash ( Cucurbita pepo ). Small pieces of callus were plasmolyzed in a graded series of mannitol solutions and fixed in 20 kg m−3 glutaraldehyde adjusted to be isosmotic with the particular plasmolysing solution. The callus samples were further processed using standard electron microscopy techniques. Using this procedure, mature sieve elements that form in squash callus have an osmotic potentional of -2.4MPa. The osmotic potential of the callus sieve elements was comparable to values reported for the sieve tube members of the phloem in intact plants. This ability of callus sieve elements to develop high internal hydrostatic pressures demonstrates that they are capable of phloem loading. However, the osmotic potentials of the surrounding parenchymatous cells and companion cells were only –1.15 and –1.5 MPa, respectively. In contrast to the companion cells of the phloem in intact plant tissues, the osmotic potential of the callus companion cells indicated that they were not directly involved in phloem loading. Several immature sieve elements containing distinct nuclei and vacuoles were observed in the callus granules. These immature sieve elements were plasmolyzed in weaker mannitol solutions (below 0.6kmol m−3) than the enucleate sieve elements (1.01 kmol m−3 mannitol). The low solute concentrations in immature sieve elements indicated that the ability to load sugars occurs concomitantly with the maturation of the sieve element protoplast.  相似文献   

16.
The hypersensitive reaction of Samsun NN tobacco leaves to tobacco mosaic virus (TMV) was accompanied by a large increase in ethylene production, just before necrotic local lesions became visible. Normal and virus-induced ethylene production were both largely inhibited by 0.1 millimolar aminoethoxyvinylglycine indicating that methionine is a main ethylene precursor.  相似文献   

17.
Salinity and drought tolerance of mannitol-accumulating transgenic tobacco   总被引:8,自引:1,他引:7  
Tobacco plants (Nicotiana tabacum L.) were transformed with a mannitol-1-phosphate dehydrogenase gene resulting in mannitol accumulation. Experiments were conducted to determine whether mannitol provides salt and/or drought stress protection through osmotic adjustment. Non-stressed transgenic plants were 20–25% smaller than non-stressed, non-transformed (wild-type) plants in both salinity and drought experiments. However, salt stress reduced dry weight in wild-type plants by 44%, but did not reduce the dry weight of transgenic plants. Transgenic plants adjusted osmotically by 0.57 MPa, whereas wild-type plants did not adjust osmotically in response to salt stress. Calculations of solute contribution to osmotic adjustment showed that mannitol contributed only 0-003-0-004 MPa to the 0.2 MPa difference in full turgor osmotic potential (πo) between salt-stressed transgenic and wild-type plants. Assuming a cytoplasmic location for mannitol and that the cytoplasm constituted 5% of the total water volume, mannitol accounted for only 30–40% of the change in πo of the cytoplasm. Inositol, a naturally occurring polyol in tobacco, accumulated in response to salt stress in both transgenic and wild-type plants, and was 3-fold more abundant than mannitol in transgenic plants. Drought stress reduced the leaf relative water content, leaf expansion, and dry weight of transgenic and wild-type plants. However, πo was not significantly reduced by drought stress in transgenic or wild-type plants, despite an increase in non-structural carbohydrates and mannitol in droughted plants. We conclude that (1) mannitol was a relatively minor osmolyte in transgenic tobacco, but may have indirectly enhanced osmotic adjustment and salt tolerance; (2) inositol cannot substitute for mannitol in this role; (3) slower growth of the transgenic plants, and not the presence of mannitol per se, may have been the cause of greater salt tolerance, and (4) mannitol accumulation was enhanced by drought stress but did not affect πo or drought tolerance.  相似文献   

18.
Akad  F.  Teverovsky  E.  David  A.  Czosnek  H.  Gidoni  D.  Gera  A.  Loebenstein  G. 《Plant molecular biology》1999,40(6):969-976
We have shown previously that localization of tobacco mosaic virus (TMV) in tobacco is associated with a ca. 23 kDa protein that inhibits replication of several plant viruses. This protein, named inhibitor of virus replication (IVR), was purified from the medium of TMV-inoculated protoplasts derived from Nicotiana tabacum cv. Samsun NN. IVR was shown to be present also in induced-resistant leaf tissue of N. tabacum cv. Samsun NN. We prepared an expression cDNA library from such induced-resistant tissue and screened it with a polyclonal antibody raised against the IVR protein. A 1016 bp clone (named NC330) containing a 597 bp open reading frame, coding for a 21.6 kDa polypeptide, was isolated. The NC330 clone hybridized with RNA from induced-resistant tissue from N. tabacum cv. Samsun NN but not with RNA from non-induced tissue. Likewise, it did not hybridize with RNA from infected or uninfected tissue of N. tabacum cv. Samsun nn. Similarly, the NC330 cloned probe hybridized with the RT-PCR products from RNA of the induced-resistant tissue only. In Southern blot hybridization the NC330 DNA probe detected several genomic DNA fragments in both N. tabacum cv. Samsun NN and Samsun nn. The size of the DNA fragments differed in Samsun NN and Samsun nn. We suggest that DNA encoding the IVR-like protein is present in resistant and susceptible N. tabacum genotypes, but is expressed only in NN. We have inserted the NC330 into the expression vector pET22b and a 21.6 kDa protein was produced in Escherichia coli that reacted in immunoblots with the IVR antibody. This protein greatly reduced replication of TMV in N. tabacum cv. Samsun nn leaf disk assays.  相似文献   

19.
Abstract Cells fixed during freezing or plasmolysis were used to study membrane alterations in hardened and non-hardened Brassica napus suspension-cultured cells and rye leaf mesophyll cells. The plasmalemma in non-hardened rye mesophyll cells formed multilamellar vesicles during lethal freezing at high subzero temperatures (–5°C). These vesicles became highly condensed at lower subzero temperatures (–10°C). Conversely, cold-hardened rye mesophyll cells did not undergo membrane alterations at these temperatures. The results from plasmolysis of B. napus and rye mesophyll cells hardened by ABA at 25 °C and low temperature (2°C), respectively, verify the cell response to lethal freezing. Again there was a continuum of responses with 1 kmol m?3 balanced salt causing multilamellar protrusions. Appression of the plasmalemma against the tonoplast to form multilamellar vesicles and the invagination of these vesicles into the tonoplast were also observed in rye cells undergoing lethal plasmolysis. Increasing the plasmolysing solution to 3 kmol m?3 occasionally caused the formation of multilamellar vesicles on the cell surface of hardened rye mesophyll cells.  相似文献   

20.
This study reports the extent and character of plasmolysis and other morphological changes as shown by electron microscopy in a strain of Klebsiella pneumoniae and with sucrose or polyethylene glycol 400 (PEG-400) as the plasmolysing agent at a water activity of 0.935. Both solutes produced severe plasmolysis in K. pneumoniae cells; PEG-400 also caused some cell wall collapse and finger like extrusions to emerge from the bacterial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号