首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the transport of maltose in a genetically defined maltose-fermenting strain of Saccharomyces cerevisiae carrying the MAL1 locus. Two kinetically different systems were identified: a high-affinity transporter with a Km of 4 mM and a low-affinity transporter with a Km of 70 to 80 mM. The high-affinity maltose transporter is maltose inducible and is encoded by the MAL11 (and/or MAL61) gene of the MAL1 (and/or MAL6) locus. The low-affinity maltose transporter is expressed constitutively and is not related to MAL11 and/or MAL61. Both maltose transporters are subject to glucose-induced inactivation.  相似文献   

2.
3.
Summary We have physically and functionally identified three genes at the MAL6 locus of Saccharomyces carlsbergensis. Using multicopy yeast plasmid vectors, we have subcloned various segments of the entire MAL6 locus. The functional characterization of the MAL6 subcloned regions was determined by (1) analyzing biochemically the levels of MAL-encoded proteins (maltase [-D-glucosidase, E.C. 3.2.1.20] and maltose transport protein) in cells transformed with various MAL6 subclones, and (2) testing the ability of the subclones to complement the maltose fermentation defects of well characterized Mal mutants in the highly homologous MAL1 locus. The physical homology between MAL6 and MAL1 is in part demonstrated by the gene disruption of MAL1 using subcloned MAL6 DNA sequences. The results demonstrate that the MAL6 locus is a complex of at least three genes: MAL6R, MAL6T and MAL6S. These genes specify, respectively, a regulatory function, a maltose transport activity (presumably the maltose permease) and the structural gene for maltase. The functional organization of the MAL6 locus is thus identical to that which we had previously determined by mutational analysis for the MAL1 locus.  相似文献   

4.
Maltose fermentation in Saccharomyces species requires the presence of at least one of five unlinked MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. Each of these loci consists of a complex of genes involved in maltose metabolism; the complex includes maltase, a maltose permease, and an activator of these genes. At the MAL6 locus, the activator is encoded by the MAL63 gene. While the MAL6 locus has been the subject of numerous studies, the binding sites of the MAL63 activator have not been determined. In this study, we used Escherichia coli extracts containing the MAL63 protein to define the binding sites of the MAL63 protein in the divergently transcribed MAL61-62 promotor. When a DNA fragment containing these sites was placed upstream of a CYC1-lacZ gene, maltose induced beta-galactosidase. These sites therefore constitute an upstream activating sequence for the MAL genes.  相似文献   

5.
Mutations resulting in constitutive production of maltase have been identified at each of the five MAL loci of Saccharomyces yeasts. Here we examine a dominant constitutive, glucose-repression-insensitive allele of the MAL4 locus (MAL4-C). Our results demonstrate that MAL4-C is an alteration in the MAL43 gene, which encodes the positive regulator of the MAL structural genes, and that its product is trans-acting. The MAL43 gene from the MAL4-C strain was cloned and integrated into a series of nonfermenting strains lacking a functional regulatory gene but carrying copies of the maltose permease and maltase structural genes. Expression of the maltase structural gene was both constitutive and insensitive to glucose repression in these transformants. The MAL4-C allele also results in constitutive expression of the unlinked MAL12 gene (encoding maltase) in this strain. In addition, the cloned MAL43 gene was shown to be dominant to the wild-type MAL63 gene. We also show that most of the glucose repression insensitivity of strains carrying the MAL4-C allele results from alteration of MAL43.  相似文献   

6.
Polarized transport of lipids and proteins to the apical and basolateral membrane subdomains is essential for the functioning of epithelial cells. Apical transport is mediated by a direct route from the Golgi and an indirect route, referred to as transcytosis, involving the transport of the protein to the basolateral membrane followed by its internalization and subsequent transcellular transport to the apical subdomain. MAL and MAL2 have been demonstrated to be essential components of the machinery for the direct and indirect routes, respectively. Herein, we review the range of expression of MAL and MAL2 in normal human tissue and compare it with that of neoplastic tissue. Our analysis provides insight into the potential use of MAL- and MAL2-mediated pathways in many types of epithelial cells as well as in nonepithelial cells. In addition, the specific alterations in MAL and/or MAL2 expression observed in specific types of carcinoma provides a basis to understand the loss of the polarized phenotype that frequently accompanies the neoplastic transformation process. This points out potential applications of MAL and MAL2 as markers for tumor characterization.  相似文献   

7.
The proteolytic caspase cascade plays a central role in the signaling and execution steps of apoptosis. This study investigated the activation of different caspases in apoptosis induced by MAL (a folding variant of human alpha-lactalbumin) isolated from human milk. Our results show that the caspase-3-like enzymes, and to a lesser extent the caspase-6-like enzymes, were activated in Jurkat and A549 cells exposed to MAL. Activated caspases subsequently cleaved several protein substrates, including PARP, lamin B, and alpha-fodrin. A broad-range caspase inhibitor, zVAD-fmk, blocked the caspase activation, the cleavage of proteins, and DNA fragmentation, indicating an important role for caspase activation in MAL-induced apoptosis. Since an antagonistic anti-CD95 receptor antibody, ZB4, did not influence the MAL-induced killing, we conclude that this process does not involve the CD95-mediated pathway. While MAL did not directly activate caspases in the cytosol, it colocalized with mitochondria and induced the release of cytochrome c. Thus, these results demonstrate that caspases are activated and involved in apoptosis induced by MAL and that direct interaction of MAL with mitochondria leads to the release of cytochrome c, suggesting that this release is an important step in the initiation and/or amplification of the caspase cascade in these cells.  相似文献   

8.
9.
Oligodendrocytes (OLs), the myelin-producing cells of the central nervous system, segregate different surface subdomains at the plasma membrane as do other differentiated cells such as polarized epithelia and neurons. To generate the complex membrane system that characterizes myelinating OLs, large amounts of membrane proteins and lipids need to be synthesized and correctly targeted. In polarized epithelia, a considerable fraction of apical proteins are transported by an indirect pathway involving a detour to the basolateral membrane before being internalized and transported across the cell to the apical membrane by a process known as transcytosis. The apical recycling endosome (ARE) or its equivalent, the subapical compartment (SAC), of hepatocytes is an intracellular trafficking station involved in the transcytotic pathway. MAL2, an essential component of the machinery for basolateral-to-apical transcytosis, is an ARE/SAC resident protein. Here, we show that, after differentiation, murine oligodendrocyte precursor and human oligodendroglioma derived cell lines, Oli-neu and HOG, respectively, up-regulate the expression of MAL2 and accumulate it in an intracellular compartment, exhibiting a peri-centrosomal localization. In these oligodendrocytic cell lines, this compartment shares some of the main features of the ARE/SAC, such as colocalization with Rab11a, sensitivity to disruption of the microtubule cytoskeleton with nocodazole, and lack of internalized transferrin. Therefore, we suggest that the MAL2-positive compartment in oligodendrocytic cells could be a structure analogous to the ARE/SAC and might have an important role in the sorting of proteins and lipids for myelin assembly during oligodendrocyte differentiation.  相似文献   

10.
MAL, a compact hydrophobic, four-transmembrane-domain apical protein that copurifies with detergent-resistant membranes is obligatory for the machinery that sorts glycophosphatidylinositol (GPI)-anchored proteins and others to the apical membrane in epithelia. The mechanism of MAL function in lipid-raft–mediated apical sorting is unknown. We report that MAL clusters formed by two independent procedures—spontaneous clustering of MAL tagged with the tandem dimer DiHcRED (DiHcRED-MAL) in the plasma membrane of COS7 cells and antibody-mediated cross-linking of FLAG-tagged MAL—laterally concentrate markers of sphingolipid rafts and exclude a fluorescent analogue of phosphatidylethanolamine. Site-directed mutagenesis and bimolecular fluorescence complementation analysis demonstrate that MAL forms oligomers via ϕxxϕ intramembrane protein–protein binding motifs. Furthermore, results from membrane modulation by using exogenously added cholesterol or ceramides support the hypothesis that MAL-mediated association with raft lipids is driven at least in part by positive hydrophobic mismatch between the lengths of the transmembrane helices of MAL and membrane lipids. These data place MAL as a key component in the organization of membrane domains that could potentially serve as membrane sorting platforms.  相似文献   

11.
Differential solubilization of membrane components by cold 1% Triton X-100 extraction is common practice in cell biology and membrane research, used to define components of, or localization within membrane domains called lipid rafts. In this study, extraction of biological membranes was continuously monitored in single cells by confocal microscopy. The distributions of fluorescently-tagged proteins that label raft and non-raft membranes, cytosolic and cytoskeletal proteins were continuously monitored upon addition of the detergent. Membranes containing the non-raft membrane protein VSVG-GFP were immediately extracted from the plasma membrane, whereas raft-membrane proteins were predominantly resistant to the detergent. The morphological characteristics of differential membrane solubilization consisted of the formation of pores that expand and percolate as the detergent-mediated solubilization proceeds. Pore expansion and percolation was much slower and more restricted in non-polarized MDCK cells than in COS-7 cells. Heterologous overexpression in COS-7 cells of the fluorescently-tagged human MAL, a tetra-spanning, lipid-raft-associated protein, significantly slowed and limited membrane pore expansion and percolation. Extensive percolation resulting in large holes in the membrane was observed for the raft-associated, GPI-GFP-labeled membranes in COS-7 cells. Quantitative analysis carried out using pixel intensity variance as an indicator of membrane pore expansion demonstrated that the MAL protein is capable of modifying the plasma membrane, thereby increasing its resistance to detergent-induced pore formation.  相似文献   

12.
Summary Multigene families are a ubiquitous feature of eukaryotes; however, their presence in Saccharomyces is more limited. The MAL multigene family is comprised of five unlined loci, MAL1, MAL2, MAL3, MAL4 and MAL6, any one of which is sufficient for yeast to metabolize maltose. A cloned MAL6 locus was used as a probe to facilitate the cloning of the other four functional loci as well as two partially active alleles of MAL1. Each locus could be characterized as a cluster of three genes, MALR (regulatory), MALT (maltose transport or permease) and MALS (structural or maltase), encoded by a total of about 7 kb of DNA; however, homologous sequences at each locus extend beyond the coding regions. Our results indicate that there is extensive homology among the MAL loci, especially within their maltase genes. The greatest sequence diversity occurs in their regulatory gene regions. Southern cross analyses of the cloned MAL loci indicate a single duplication of the MAL6R-homologous sequences upstream of the MAL6R gene as well as an extensive duplication of more than 10 kb at the MAL3 locus. The large repeat at the MAL3 locus results in the presence of four copies of MAL3R-homologous sequences and two copies of MAL3T-homologous sequences at that locus. Two naturally occurring inactive alleles of MAL1 show a deletion or divergence of their MALR sequences. The significance of these repeats in the evolution of the MAL multigene family is discussed.  相似文献   

13.
14.
15.
Transcytosis is used alone (e.g., hepatoma HepG2 cells) or in combination with a direct pathway from the Golgi (e.g., epithelial MDCK cells) as an indirect route for targeting proteins to the apical surface. The raft-associated MAL protein is an essential element of the machinery for the direct route in MDCK cells. Herein, we present the functional characterization of MAL2, a member of the MAL protein family, in polarized HepG2 cells. MAL2 resided selectively in rafts and is predominantly distributed in a compartment localized beneath the subapical F-actin cytoskeleton. MAL2 greatly colocalized in subapical endosome structures with transcytosing molecules en route to the apical surface. Depletion of endogenous MAL2 drastically blocked transcytotic transport of exogenous polymeric immunoglobulin receptor and endogenous glycosylphosphatidylinositol-anchored protein CD59 to the apical membrane. MAL2 depletion did not affect the internalization of these molecules but produced their accumulation in perinuclear endosome elements that were accessible to transferrin. Normal transcytosis persisted in cells that expressed exogenous MAL2 designed to resist the depletion treatment. MAL2 is therefore essential for transcytosis in HepG2 cells.  相似文献   

16.
Actin dynamics control SRF activity by regulation of its coactivator MAL   总被引:42,自引:0,他引:42  
  相似文献   

17.
The dispersed, repeated family of MAL loci in Saccharomyces spp   总被引:10,自引:2,他引:8       下载免费PDF全文
This report concludes our analysis of the various standard maltose-fermenting strains of Saccharomyces spp. We showed that, in addition to either the MAL2 or MAL4 functional locus present in the standard MAL2 and MAL4 strains, both strains contain two cryptic MALg genes mapping to the MAL1 and MAL3 locus positions. (Functional MAL loci appear to consist of two linked complementing gene functions, MALp and MALg. Cryptic MALg genes lack a linked functional MALp gene.) Using a probe containing a DNA fragment derived from the MAL6 locus, we detected three genomic HindIII fragments in both the MAL2 and MAL4 strains. Each of these HindIII fragments is shown to segregate in a Mendelian fashion and to be linked to one of the three MAL loci in each of the strains. We also detected additional fragments having significant sequence homology to the MAL6 probe but lacking in MAL-related functions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号