首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.  相似文献   

2.
3.
In intact mitochondria supplemented with succinate or -hydroxybutyrate, the rates of oxygen consumption induced by beauvericin followed the ionic selectivity pattern: Na+>Rb+, Cs+, K+, Li+.When the respiratory substrate is glutamate plus malate in the absence of phosphate, the selectivity pattern is: K+>Rb+>Cs+>Li+>Na+.When the media are supplemented with phosphate, the Na+/K+ discrimination of beauvericin is considerably modified with all the respiratory substrates, being K+>Na+ with succinate and Na+>K+ with glutamate plus malate, whereas no significant ionic selectivity differences were obtained with -hydroxybutyrate.The respiratory control induced by oligomycin in submitochondrial particles is released by beauvericin only in the presence of a nigericin-like carboxylic antibiotic and an alkali metal cation, being far more effective in K+ than in Na+.This selectivity is maintained regardless of whether NADH or succinate is used as a respiratory substrate.Release of respiratory control can also be obtained with a combination of beauvericin and NH4Cl.This information indicates that the ionic selectivity pattern obtained with beauvericin in mitochondrial membranes is an intrinsic property of the antibiotic which, however, can be significantly modified by factors such as the nature of the translocatable substrate anion or other anionic species, as well as the possible operation of a Na+/H+ antiporter existent in the membrane.  相似文献   

4.
The accessory subunit of mitochondrial DNA polymerase γ, POLGβ, functions as a processivity factor in vitro. Here we show POLGβ has additional roles in mitochondrial DNA metabolism. Mitochondrial DNA is arranged in nucleoprotein complexes, or nucleoids, which often contain multiple copies of the mitochondrial genome. Gene-silencing of POLGβ increased nucleoid numbers, whereas over-expression of POLGβ reduced the number and increased the size of mitochondrial nucleoids. Both increased and decreased expression of POLGβ altered nucleoid structure and precipitated a marked decrease in 7S DNA molecules, which form short displacement-loops on mitochondrial DNA. Recombinant POLGβ preferentially bound to plasmids with a short displacement-loop, in contrast to POLGα. These findings support the view that the mitochondrial D-loop acts as a protein recruitment centre, and suggest POLGβ is a key factor in the organization of mitochondrial DNA in multigenomic nucleoprotein complexes.  相似文献   

5.
6.
Retroviral gene transfer and bone marrow transplantation has been used by many investigators to study the role of macrophage proteins in different mouse models of human disease. While this approach is faster and less expensive than generating transgenic mice with macrophage-specific promoters and applicable to a wider array of mouse models, it has been hampered by two major drawbacks: labor-intensive cloning procedures involved in generating retroviral vectors for each gene of interest and low viral titers. Here we describe the construction of a MSCV-based retroviral vector that can serve as an acceptor vector for commercially available Cre-lox-compatible donor vectors. Using this new retroviral vector in combination with a FACS approach to enhance viral titers, we generated high-titer retroviruses carrying either EGFP-tagged cytosolic or EGFP-tagged mitochondria-targeted glutathione reductase. We show that the introduction of these constructs via retroviral gene transfer and bone marrow transplantation into atherosclerosis-prone LDL receptor-null mice results in the long-term increase in macrophage glutathione reductase activity.  相似文献   

7.
δ-Aminolevulinic acid (ALA) synthase was partially purified from liver cytosol fraction of rats treated with allylisopropylacetamide (AIA). The cytosol ALA synthase showed an apparent molecular weight of 320,000. The cytosol ALA synthase of this size dissociates into at least three protein components when subjected to sucrose density gradient centrifugation in the presence of 0.25 m NaCl: one is the catalytically active protein with an s value of about 6.4 or a molecular weight of 110,000, and the other two are catalytically inactive binding proteins showing s values of about 4 and 8, respectively. Recombination of the 6.4 S protein and the 4 S protein yielded a protein complex with an apparent molecular weight of 170,000 and recombination of all three protein components resulted in formation of the original cytosol ALA synthase. The cytosol ALA synthase also loses its binding proteins when treated with various proteases; thus, the enzyme-active protein obtained after papain digestion was very similar, if not identical, to mitochondrial ALA synthase. When treated with trypsin, however, the cytosol ALA synthase was converted to an enzyme showing an apparent molecular weight of 170,000, which probably represents the complex of the mitochondria-type enzyme and the 4 S binding protein. The cytosol ALA synthase tends to aggregate to form a dimer with an apparent molecular weight of 650,000–700,000. The aggregated form of the cytosol ALA synthase was less susceptible to trypsin digestion. Hemin strongly stimulated dimer formation of the cytosol ALA synthase and the aggregate produced by contact with hemin was very tight and did not easily dissociate into its respective protein components by sucrose gradient centrifugation or even after treatment with trypsin. The possible mechanisms of the conversion of cytosol ALA synthase to the mitochondrial enzyme and also of the inhibition by hemin of the intracellular translocation of ALA synthase are discussed.  相似文献   

8.
9.
1. Studies on the incorporation of [3-14C]pyruvate and d-3-hydroxy[3-14C]butyrate into the brain lipid fraction by brain homogenates of the suckling (7-day-old) rat have been carried out. 2. Whereas approximately twice as much CO2 was evolved from pyruvate compared with 3-hydroxybutyrate metabolism, similar amounts of the radioactivity of these two precursors were incorporated into the lipid fraction. Furthermore, in both cases the incorporation into lipid was almost tripled when glucose (10mm) or NADPH (2.5mm) was added to the incubation media. 3. If 5mm-(—)-hydroxycitrate, an ATP–citrate lyase inhibitor, was added to the incubation the incorporation of carbon from pyruvate was inhibited to 39% of the control and from 3-hydroxybutyrate to 73% of the control, whereas CO2 production from both precursors was not affected. 4. The incorporation from pyruvate or 3-hydroxybutyrate into lipids was not affected by the presence of 10mm-glutamate in the medium (to encourage N-acetylaspartate production). However, incorporation from pyruvate was inhibited by 21% in the presence of 5mm-amino-oxyacetate (a transaminase inhibitor) and by 83% in the presence of both hydroxycitrate (5mm) and amino-oxyacetate. 5. Incorporation from 3-hydroxybutyrate into brain lipids was inhibited by 20% by amino-oxyacetate alone, but by 55% in the presence of both hydroxycitrate and amino-oxyacetate. 6. It is concluded that the mechanism of carbon transfer from pyruvate into lipids across the mitochondrial membrane in the suckling rat brain is mainly via citrate and N-acetylaspartate. 3-Hydroxybutyrate, in addition to using these routes, may also be incorporated via acetoacetate formation and transport to the cytosol.  相似文献   

10.
Pharmacological opening of mitochondrial cardiac ATP-sensitive potassium (K(ATP)) channels has the chance to be a promising but still controversial cardioprotective mechanism. Physiological roles of mitochondrial K(ATP) channels in the myocardium remain unclear. We studied the effects of diazoxide, a specific opener of these channels, on the function of rat mitochondria in situ in saponin-permeabilized fibers using an ionic medium that mimics the cytosol. In the presence of NADH-producing substrates (malate + glutamate), neither 100 microm diazoxide nor 100 microm glibenclamide (a K(ATP) channel blocker) changed the mitochondrial respiration in the absence or presence of ADP. Because the K(ATP) channel function could be modified by changes in adenine nucleotide concentrations near the mitochondria, we studied the effects of diazoxide and glibenclamide on the functional activity of mitochondrial kinases. Both diazoxide and glibenclamide did not change the in situ ADP sensitivity in the presence or absence of creatine (apparent K(m) values for ADP were, respectively, 59 +/- 9 and 379 +/- 45 microm). Similarly, stimulation of the mitochondrial respiration with AMP in the presence of ATP due to adenylate kinase activity was not affected by the modulators of K(ATP) channels. However, when succinate was used as substrate, diazoxide significantly inhibited basal respiration by 22% and maximal respiration by 24%. Thus, at a cardioprotective dose, the main functional effect of diazoxide depends on respiratory substrates and seems not to be related to K(ATP) channel activity.  相似文献   

11.
12.
13.
Binding of deoxycorticosterone to cytochrome P-450 of the 11β-hydroxylase system in adrenal cortex mitochondria was inhibited by the nonpenetrating protein reagent diazobenzenesulfonate in damaged but not in intact mitochondria. The slowly penetrating hydrophilic substrate deoxycorticosterone 21-sulfate showed a slow binding to cytochrome P-450 as compared to the hydrophobic nonesterified steroid. In contrast, the esterified and nonesterified steroids bound equally fast in sonicated, aged or lysolecithin-treated mitochondria. These data imply that the steroid substrates must penetrate the inner mitochondrial membrane to interact with the 11β-hydroxylase system.  相似文献   

14.
Recent mitogenomic studies have exposed a gene order (GO) shared by two classes, four orders and 31 species (‘common GO’) within the flatworm subphylum Neodermata. There are two possible hypotheses for this phenomenon: convergent evolution (homoplasy) or shared ancestry (plesiomorphy). To test those, we conducted a meta-analysis on all available mitogenomes to infer the evolutionary history of GO in Neodermata. To improve the resolution, we added a newly sequenced mitogenome that exhibited the common GO, Euryhaliotrema johni (Ancyrocephalinae), to the dataset. Phylogenetic analyses conducted on two datasets (nucleotides of all 36 genes and amino acid sequences of 12 protein coding genes) and four algorithms (MrBayes, RAxML, IQ-TREE and PhyloBayes) produced topology instability towards the tips, so ancestral GO reconstructions were conducted using TreeREx and MLGO programs using all eight obtained topologies, plus three unique topologies from previous studies. The results consistently supported the second hypothesis, resolving the common GO as a plesiomorphic ancestral GO for Neodermata, Cestoda, Monopisthocotylea, Cestoda + Trematoda and Cestoda + Trematoda + Monopisthocotylea. This allowed us to trace the evolutionary GO scenarios from each common ancestor to its descendants amongst the Monogenea and Cestoda classes, and propose that the common GO was most likely retained throughout all of the common ancestors, leading to the extant species possessing the common GO. Neodermatan phylogeny inferred from GOs was largely incongruent with all 11 topologies described above, but it did support the mitogenomic dataset in resolving Polyopisthocotylea as the earliest neodermatan branch. Although highly derived GOs might be of some use in resolving isolated taxonomic and phylogenetic uncertainties, we conclude that, due to the discontinuous nature of their evolution, they tend to produce artefactual phylogenetic relationships, which makes them unsuitable for phylogenetic reconstruction in Neodermata. Wider and denser sampling of neodermatan mitogenomic sequences will be needed to infer the evolutionary pathways leading to the observed diversity of GOs with confidence.  相似文献   

15.
Mitochondrial membranes were incubated with NN'-dicyclohexyl[(14)C]carbodi-imide, which irreversibly inhibited the partial reactions of oxidative phosphorylation by 95-100%. Solutions of the membranes were analysed on polyacrylamide gels. Of the radioactivity recovered from the gels 90% was shown to be associated with a single protein of molecular weight about 10000. The radioactive protein and associated phospholipid was solubilized from the membrane by extraction with chloroform-methanol mixtures and was concentrated 50-fold by solvent fractionation and adsorption chromatography on Sephadex LH-20. Several protein-radioactivity peaks were obtained by Sephadex LH-20 chromatography. However, 90-100% of the radioactivity in each peak was shown to be associated with a single protein similar to the major radioactive protein observed in electrophoretograms of the membrane solutions. It is concluded that dicyclohexylcarbodi-imide inhibits mitochondrial oxidative phosphorylation by reacting covalently with a group on this chloroform-methanol-soluble protein. The possible role of this protein in oxidative phosphorylation is discussed.  相似文献   

16.
We report here the analyses of complete mtDNA coding region sequences from more than 270 Alzheimer’s disease (AD) patients and normal controls to determine if inherited mtDNA mutations contribute to the etiology of AD. The AD patients and normal individuals were carefully screened and drawn from two populations of European descent in an effort to avoid spurious effects due to local population anomalies. Overall, there were no significant haplogroup associations in the combined AD and normal control sequence sets. Reduced median network analysis revealed that the AD mtDNA sequences contained a higher number of substitutions in tRNA genes, and that there was an elevated frequency of replacement substitutions in the complex I genes of the control sequences. Analysis of the replacement substitutions indicated that those arising in the AD mtDNAs were no more deleterious, on average, than those in the control mtDNAs. The only evidence for the synergistic action of mutations was the presence of both a rare non-conservative replacement substitution and a tRNA mutation in 2 AD mtDNAs, from a total of 145, whereas such a combination of mutations was not observed in the control sequences. Overall, the results reported here indicate that pathogenic inherited mtDNA mutations do not constitute a major etiological factor in sporadic AD. At most, a small proportion of AD patients carry a pathogenic mtDNA mutation and a small proportion of cognitively normal aged individuals carry a mtDNA mutation that reduces the risk of AD.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
The effect of acclimation at different temperatures on the activity of interscapular brown adipose tissue has been investigated in the hamster, a hibernator. Between 31° and 4°C the cytochrome oxidase activity of the tissue increased 4- to 5-fold, mitochondrial GDP binding per mg of mitochondrial protein doubled, and the amount of uncoupling protein rose from 1.7% to 5.4% of total mitochondrial protein. It is concluded that there are clear adaptive changes induced by temperature in brown adipose tissue of the hamster, but the changes are limited in comparison with those in the mouse.  相似文献   

18.
One fundamental property of prions is the formation of strains—prions that have distinct biological effects, despite a common amino acid sequence. The strain phenomenon is thought to be caused by the formation of different molecular structures, each encoding for a particular biological activity. While the precise mechanism of the formation of strains is unknown, they tend to arise following environmental changes, such as passage between different species. One possible mechanism discussed here is heterogeneous seeding; the formation of a prion nucleated by a different molecular structure. While heterogeneous seeding is not the only mechanism of prion mutation, it is consistent with some observations on species adaptation and drug resistance. Heterogeneous seeding provides a useful framework to understand how prions can adapt to new environmental conditions and change biological phenotypes.  相似文献   

19.
The proteins synthesized in the mitochondria of mouse and human cells grown in tissue culture were examined by electrophoresis in polyacrylamide gels. The proteins were labelled by incubating the cells in the presence of [(35)S]methionine and an inhibitor of cytoplasmic protein synthesis (emetine or cycloheximide). A detailed comparison between the labelled products of mouse and human mitochondrial protein synthesis was made possible by developing radioautograms after exposure to slab-electrophoresis gels. Patterns obtained for different cell types of the same species were extremely similar, whereas reproducible differences were observed on comparison of the profiles obtained for mouse and human cells. Four human-mouse somatic cell hybrids were examined, and in each one only components corresponding to mouse mitochondrially synthesized proteins were detected.  相似文献   

20.
Thiamine deficiency results in Wernicke’s encephalopathy and is commonly encountered in chronic alcoholism, gastrointestinal diseases, and HIV AIDS. The earliest metabolic consequence of thiamine deficiency is a selective loss in activity of the thiamine diphosphate-dependent enzyme α-ketoglutarate dehydrogenase (α-KGDH), a rate-limiting tricarboxylic acid cycle enzyme. Thiamine deficiency is characterized neuropathologically by selective neuronal cell death in the thalamus, pons, and cerebellum. The cause of this region-selective neuronal loss is unknown, but mechanisms involving cellular energy failure, focal lactic acidosis, and NMDA receptor-mediated excitotoxicity have classically been implicated. More recently, evidence supports a role for oxidative stress. Evidence includes increased endothelial nitric oxide synthase, nitrotyrosine deposition, microglial activation, and lipid peroxidation. Reactive oxygen species production results in decreased expression of astrocytic glutamate transporters and decreased activities of α-KGDH, resulting in an amplification of cell death mechanisms in thiamine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号