首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1-14C]acetate were purified from leaves of both 16:3 (Solanum nodiflorum, Chenopodium album) and 18:3 plants (Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[14C]gal were similar for both types of chloroplasts.

The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage.

Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [14C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants.

  相似文献   

2.
Young expanding spinach leaves exposed to 14CO2 under physiological conditions for up to 20 minutes assimilated CO2 into lipids at a mean rate of 7.6 micromoles per milligram chlorophyll per hour following a lag period of 5 minutes. Label entered into all parts of the lipid molecule and only 28% of the 14C fixed into lipids was found in the fatty acid moieties, i.e. fatty acids were synthesized from CO2in vivo at a mean rate of 2.1 micromoles per milligram chlorophyll per hour. Intact spinach chloroplasts isolated from these leaves incorporated H14CO3 into fatty acids at a maximal rate of 0.6 micromole per milligram chlorophyll per hour, but were unable to synthesize either the polar moieties of their lipids or polyunsaturated fatty acids. Since isolated chloroplasts will only synthesize fatty acids at rates similar to the one obtained with intact leaves in vivo if acetate is used as a precursor, it is suggested that acetate derived from leaf mitochondria is the physiological fatty acid precursor.  相似文献   

3.
Chloroplasts highly active in the synthesis of long-chain fatty acids from [1-14C]acetate were prepared from leaves of Solanum nodiflorum, Chenopodium quinoa, Carthamus tinctorius, and Pisum sativum. These preparations were used to test whether the various additions to incubation media found to stimulate the synthesis of particular lipid classes in vitro by Spinacia oleracea chloroplasts were applicable generally. Chloroplasts from 18:3 plants incorporated a greater proportion of radioactivity into unesterified fatty acids under control conditions than did those from 16:3 plants. Supplying exogenous sn-glycerol 3-phosphate or Triton X-100 to chloroplasts increased the synthesis of glycerolipids in all cases and accentuated the capacity of chloroplasts from 18:3 plants to accumulate phosphatidic acid rather than the diacylglycerol accumulated by chloroplasts from 16:3 plants. The UDP-galactose-dependent synthesis of labeled diacylgalactosylglycerol was much less active in incubations of chloroplasts from 18:3 plants also containing sn-glycerol 3-phosphate and Triton X-100 compared with similar incubations from 16:3 plants. Exogenous CoA stimulated total fatty acid synthesis in all chloroplast preparations and the further addition of ATP diverted radioactivity from the unesterified fatty acid to acyl-CoA. The results have been discussed in terms of the two pathway hypothesis for lipid synthesis in leaves.  相似文献   

4.
Intact spinach (Spinacia oleracea) chloroplasts, pulse-labeled with [14C]acetate, desaturate newly formed fatty acids as ester groups of monogalactosyl diacylglycerol in a subsequent chase in the dark. Rupture of pulse-labeled chloroplasts by addition of a detergent solution 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate preserves part of this desaturation activity. Direct addition of different free fatty acids together with appropriate cofactors to detergent-ruptured chloroplasts results in fatty acid labeling of monogalactosyl diacylglycerol. During subsequent incubation these lipid-linked fatty acids are desaturated, i.e. 18:1 to 18:2 and 18:3 and to a small extent also 16:0 to 16:3. The formation of 18:2 was also observed after incorporation of 18:1 into sulfolipid and phosphatidyl choline. Density gradient centrifugation separated a membrane fraction from detergent-ruptured chloroplasts which in the presence of appropriate cofactors incorporated 18:1 and 18:2 into the above-mentioned lipids. In the light, desaturation was dependent on added ferredoxin, whereas in the dark, in addition to ferredoxin NAD(P)H was also required. Preliminary evidence for the involvement of membrane-bound ferredoxin:NADP oxidoreductase (FNR) as a third component of desaturation in the dark was obtained by inhibitor studies including antibodies against FNR. Desaturation of lipid-bound 18:1 and 18:2 resembles stearoyl-ACP desaturation with respect to its requirement of reduced ferredoxin and oxygen.  相似文献   

5.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

6.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

7.
A substituted pyridazinone (BASF 13-338) inhibited photosynthesis in spinach (Spinacia oleracea, Hybrid 102 Arthur Yates Ltd.) leaf discs and reduced the incorporation of [1-14C]acetate into trienoic acids of diacylgalactosylglycerol while causing radioactivity to accumulate in diacylgalac-tosylglycerol dienoic acids. Although BASF 13-338 inhibited photosynthesis in isolated spinach chloroplasts, it did not prevent dienoate desaturation. In discs, the labeling of fatty acids was affected by the inhibitor only in diacylgalactosylglycerol. Very little radioactivity was incorporated into trienes of phosphatidylcholine and the proportion of the label recovered in the fatty acids of phosphatidylcholine was not changed by BASF 13-338. The herbicides caused an increase in the proportion of the lipid 14C incorporated into diacylgalactosylglycerol and a decrease in labeling of phosphatidylcholine, whereas the proportion of 14C recovered in other lipids remained unchanged. Similar results were obtained with pea (Pisum sativum cv. Victory Freeze), linseed (Linum usitatissimum cv. Punjab), and wheat (Triticum aestivum cv. Karamu). With these species, a greater proportion of the label was incorporated into phosphatidylcholine and less into diacylgalactosylglycerol than with spinach. The data indicate that trienoate synthesis uses diacylgalactosylglycerol as substrate. BASF 13-338 appears to act at that step, and seems to cause in spinach a shift in polyenoate synthesis from the pathway involving microsomal phosphatidylcholine to the pathway operating inside the chloroplast.  相似文献   

8.
A gentle procedure allowed the isolation of intact and highly active chloroplasts from the unicellular green algaAcetabularia mediterranea. These chloroplasts incorporated carbon from NaH14CO3 into fatty acids and prenyl lipids at a rate of about 20–50 nmol carbon· (mg chlorophyll)−1·h−1. Most of the fatty acids formed in vitro were esterified in galactolipids. The main prenyl lipids synthesized were the chlorophyll side chain, intermediates of the carotenogenic path, α-and β-carotene, as well as lutein. Large amounts of [1-14C]acetate were incorporated, but exclusively into fatty acids.Isopentenyl diphosphate was a good substrate for prenyl-lipid formation in hypotonically treated chloroplasts. The envelope of intact chloroplasts, however, was impermeable to this compound. Intermediates of the mevalonate pathway were not accepted as precursors under conditions whereisopentenyl diphosphate was well incorporated. The results show that the lipid biosynthetic pathways in the plastids ofAcetabularia, a member of the ancient family of Dasycladaceae, are very similar to those in higher-plant plastids. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

9.
The ATPase of avian myeloblastosis virus (AMV) is not a recognizable cellular enzyme. It hydrolyzes ATP, GTP, ITP, UTP, and dCTP at equal rates, is inhibited by high concentrations of dithiothreitol, and is partially inhibited by 1 × 10?5mp-chloromercuribenzoic acid (PCMB) and p-chloromercuribenzene sulfonate acid (PCMBS). The inhibition by the mercurials is reversed by increasing the concentration of PCMB or PCMBS to 1 × 10?3m. The enzyme requires phospholipid for activity. Incubation with phospholipase C inhibits activity and subsequent addition of lecithin-containing saturated fatty acids partially restores activity, whereas lecithin-containing unsaturated fatty acids further inhibit activity.  相似文献   

10.
Cyanide inhibited unesterified fatty acid synthesis but stimulated glyceride synthesis from [1-14C]acetate when Spinacia oleracea chloroplasts were incubated in basal media. Both unesterified fatty acid and glyceride accumulation were inhibited when chloroplasts were incubated in a diacylglycerol mode. Stimulation of chloroplast fatty acid synthesis by either exogenous coenzyme A or Triton X-100 was almost completely abolished in the presence of cyanide. Stearoyl-ACP desaturation is considered to be inhibited to a greater extent than is fatty acid synthesis de novo.  相似文献   

11.
12.
Intact spinach and barley chloroplast normally incorporate 14C-acetate into palmitate and oleate as the major 14C fatty acids. Addition of nitrite markedly altered the relative patterns of the products with the appearance of stearate, a drop in oleate, but no marked change in palmitate. Arsenite greatly increased appearance of palmitate with a concomitant decrease in the C18 fatty acids. The effect of other anions was also examined. Spinach and barley plants grown under different nitrogen nutritional conditions also served as sources of chloroplasts, and their activities suggest a correlation between nitrite reductase activity and stearate accumulation.  相似文献   

13.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

14.
The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids.  相似文献   

15.
The integration of oleaginous microalgae cultivation with high-value products is considered a low-cost approach for manufacturing algae-based biodiesel. The objective of this study was to investigate the potential of using Fe(II) to produce fatty acids and astaxanthin in mixotrophic Chromochloris zofingiensis. Fatty acid biosynthesis was less sensitive than astaxanthin formation to the changes in Fe2+ concentrations. However, the enhancement and inhibition of fatty acids formation were concomitant with an increase and a decrease in the production of astaxanthin, respectively. The highest contents of astaxanthin and total fatty acids were simultaneously obtained at 0.2 mM Fe2+ with the corresponding values of 2.2 mg g?1 (i.e., 25.8 mg l?1) and 41.8 % dry weight (i.e., 5 g l?1).  相似文献   

16.
Recently, microalgae have gained a lot of attention because of their ability to produce fatty acids in their surrounding environments. The present paper describes the influence of organic carbon on the different fatty acid pools including esterified fatty acids, intracellular free fatty acids and extracellular free fatty acids in Ochromonas danica. It also throws light on the ability of O. danica to secrete free fatty acids in the growth medium under photoautotrophic and mixotrophic conditions. Biomass production of photoautotrophically grown O. danica was higher than that of mixotrophically grown, where a cellular biomass formation of 1.8 g L?1 was observed under photoautotrophic condition which was about five folds higher than that under mixotrophic conditions. Contrary, the esterified fatty acid content reached up to 99 mg g?1 CDW under photoautotrophic conditions at the late exponential phase, while during mixotrophic conditions a maximum of 212 mg g?1 CDW was observed at the stationary phase. Furthermore, O. danica cells grown under mixotrophic conditions showed higher intracellular free fatty acid and extracellular free fatty acid contents (up to 51 and 20 mg g?1 CDW, respectively) than cells grown under photoautotrophic conditions (up to 26 and 4 mg g?1 CDW, respectively). The intra- and extracellular free fatty acids consisted of a high proportion of polyunsaturated fatty acids, mainly C18:2n?6, C18:3n?3 and C20:4n?6.  相似文献   

17.
A compound soluble in organic solvents and synthesized from [14C]acetate by isolated spinach chloroplasts incubated in the dark in the presence of dithiothreitol was shown to be O-acetyl dithiothreitol. The chloroplast system was required for the activation of acetate to acetyl CoA, but the transfer of the acetyl moiety to dithiothreitol was nonenzymatic. The first product of the reaction was shown to be S-acetyl dithiothreitol, but in the presence of an oxidant, simultaneous ring closure and migration of the acetyl group from the thiol to an adjacent hydroxyl group occurred to form an O-acetyl dithiothreitol.The acetyl transfer reaction involving acetyl CoA and dithiothreitol showed a marked pH dependence, being most active at about pH 9 and inoperative below pH 6. All acyl CoAs tested (C2-C18) rapidly labeled dithiothreitol; acetyl acyl carrier protein, and palmityl acyl carrier protein were much less reactive and free fatty acids were unreactive. The thiol reagents dithioerythritol, glutathione, and cysteine, in addition to dithiothreitol, reacted rapidly with acetyl CoA to form the corresponding acetyl mercaptans. 2-Mercaptoethanol was much less reactive; oxidized dithiothreitol was unreactive. The second-order rate constant for acetyl dithiothreitol synthesis was 12.3 m?1 min?1 at pH 8.5 and 30 °C.  相似文献   

18.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [14C]Acetate and [14C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

19.
The effect of low temperatures on fatty acid biosynthesis in plants   总被引:12,自引:2,他引:10       下载免费PDF全文
1. Of three systems, bulb tissue, plant leaf tissue and intact green algal (Chlorella vulgaris) cells, only the former shows an increase in rate of formation of unsaturated fatty acids with decrease in temperature. 2. In bulb tissue the oxygen concentration is rate-limiting for synthesis of unsaturated fatty acids at temperatures down to 10°. 3. At elevated oxygen concentrations the formation of unsaturated fatty acids in bulb tissue increases with temperature. 4. The failure of photosynthetic tissues to respond to either lower temperatures or increased oxygen concentrations in the presence of light is attributed to photosynthetic production of excess of oxygen. This is supported by the fact that in the dark a potentiating oxygen effect on the formation of unsaturated fatty acids can be demonstrated. 5. The HCO3 ion concentration has a small effect on the formation of unsaturated fatty acids. 6. Elevated content of unsaturated acids at lower temperatures in plants is attributed to increases in oxygen concentration in solution.  相似文献   

20.
Miquel M  Dubacq JP 《Plant physiology》1992,100(1):472-481
When incubated with [1-14C]acetate and cofactors (ATP, Coenzyme A, sn-glycerol-3-phosphate, UDPgalactose, and NADH), intact chloroplasts synthesized fatty acids that were subsequently incorporated into most of the lipid classes. To study lipid synthesis at the chloroplast envelope membrane level, 14C-labeled pea (Pisum sativum) chloroplasts were subfractionated using a single flotation gradient. The different envelope membrane fractions were characterized by their density, lipid and polypeptide composition, and the localization of enzymic activities (UDPgalactose-1,2 diacylglycerol galactosyltransferase, Mg2+-dependent ATPase). They were identified as very pure outer membranes (light fraction) and strongly enriched inner membranes (heavy fraction). A fraction of intermediate density, which probably contained double membranes, was also isolated. Labeled glycerolipids recovered in the inner envelope membrane were phosphatidic acid, phosphatidyl-glycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol. Their 14C-fatty acid composition indicated that a biosynthetic pathway similar to the prokaryotic pathway present in cyanobacteria occurred in the inner membrane. In the outer membrane, phosphatidylcholine was the most labeled glycerolipid. Phosphatidic acid, phosphatidylglycerol, 1,2 diacylglycerol, and monogalactosyldiacylglycerol were also labeled. The 14C-fatty acid composition of these lipids showed a higher proportion of oleate than palmitate. This labeling, different from that of the inner membrane, could result either from transacylation activities or from a biosynthetic pathway not yet described in pea and occurring partly in the outer chloroplast envelope membrane. This metabolism would work on an oleate-rich pool of fatty acids, possibly due to the export of oleate from chloroplast toward the extrachloroplastic medium. The respective roles of each membrane for chloroplast lipid synthesis are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号