首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A discrete theory of synchronization of optic-nerve responses during uniform, steady illumination of the compound eye ofLimulus is described here. The theory is a natural extension of the classical steady-state theory of Hartline and Ratliff (1957). In order to explain the asynchronous response to weak illumination, we find it necessary to take account of observed random fluctuations in the responses of ommatidia illuminated by themselves. Without this noisy component, the computed responses synchronize at very low excitation levels. Once synchronized, the response develops a non-linear dependence on excitation. This non-linearity is a consequence solely of synchronization and is distinct from observed excitation dependences of lateral inhibition between pairs of ommatidia (Barlow and Lange, 1974). Synchronization at the higher excitation levels is also found to reduce or destroy Mach bands which are present in responses to weaker excitations.  相似文献   

2.
The ability to transmit signals in the retina in the absence of impulses was tested by means of two agents (tetrodotoxin and procain) blocking the impulse transmission of stimuli. The slow potential (SP) and impulse discharge were recorded simultaneously from the optic nerve of the frog. Tetrodotoxin (0.5 µg/cm3) and procain (0.5–1%) introduced into the eye cup completely blocked impulses but had little effect on SP. Therefore, signals from the photoreceptors to the ganglionic cells can be transmitted in the absence of impulses. These data confirm also a conclusion drawn earlier that the SP originates as a result of electrotonic spread of the postsynaptic potentials (PSP) of ganglionic cells along the optic nerve. The agents blocking the impulse transmission of stimuli broke down the lateral inhibition between the "slow bipolars." Consequently, lateral inhibition spreads by means of the impulse mechanism in the transmission of signals. It is supposed that the interneurons participating in this spread are amacrine cells which possess the ability to generate impulses.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 536–543, September–October, 1970.  相似文献   

3.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

4.
Inhibition in the eye of Limulus   总被引:4,自引:0,他引:4       下载免费PDF全文
In the compound lateral eye of Limulus each ommatidium functions as a single receptor unit in the discharge of impulses in the optic nerve. Impulses originate in the eccentric cell of each ommatidium and are conducted in its axon, which runs without interruption through an extensive plexus of nerve fibers to become a fiber of the optic nerve. The plexus makes interconnections among the ommatidia, but its exact organization is not understood. The ability of an ommatidium to discharge impulses in the axon of its eccentric cell is reduced by illumination of other ommatidia in its neighborhood: the threshold to light is raised, the number of impulses discharged in response to a suprathreshold flash of light is diminished, and the frequency with which impulses are discharged during steady illumination is decreased. Also, the activity that can be elicited under certain conditions when an ommatidium is in darkness can be inhibited similarly. There is no evidence for the spread of excitatory influences in the eye of Limulus. The inhibitory influence exerted upon an ommatidium that is discharging impulses at a steady rate begins, shortly after the onset of the illumination on neighboring ommatidia, with a sudden deep minimum in the frequency of discharge. After partial recovery, the frequency is maintained at a depressed level until the illumination on the neighboring receptors is turned off, following which there is prompt, though not instantaneous recovery to the original frequency. The inhibition is exerted directly upon the sensitive structure within the ommatidium: it has been observed when the impulses were recorded by a microelectrode thrust into an ommatidium, as well as when they were recorded more proximally in single fibers dissected from the optic nerve. Receptor units of the eye often inhibit one another mutually. This has been observed by recording the activity of two optic nerve fibers simultaneously. The mediation of the inhibitory influence appears to depend upon the integrity of nervous interconnections in the plexus: cutting the lateral connections to an ommatidium abolishes the inhibition exerted upon it. The nature of the influence that is mediated by the plexus and the mechanism whereby it exerts its inhibitory action on the receptor units are not known. The depression of the frequency of the discharge of nerve impulses from an ommatidium increases approximately linearly with the logarithm of the intensity of illumination on receptors in its vicinity. Inhibition of the discharge from an ommatidium is greater the larger the area of the eye illuminated in its vicinity. However, equal increments of area become less effective as the total area is increased. The response of an ommatidium is most effectively inhibited by the illumination of ommatidia that are close to it; the effectiveness diminishes with increasing distance, but may extend for several millimeters. Illumination of a fixed region of the eye at constant intensity produces a depression of the frequency of discharge of impulses from a nearby ommatidium that is approximately constant, irrespective of the level of excitation of the ommatidium. The inhibitory interaction in the eye of Limulus is an integrative process that is important in determining the patterns of nervous activity in the visual system. It is analogous to the inhibitory component of the interaction that takes place in the vertebrate retina. Inhibitory interaction results in the exaggeration of differences in sensory activity from different regions of the eye illuminated at different intensities, thus enhancing visual contrast.  相似文献   

5.
Electrical activity in the flexor nerve and focal potentials (FP) in the medial and lateral zones of the ventral horn (VH) of segments L6 and L7 of the spinal cord, evoked by excitation of the contralateral motor cortex, were recorded in delicate experiments on cats. These focal potentials were studied during inhibition of the flexor response that developed as a result of prior excitation of the ipsilateral cortex ("cortical inhibition"). During the inhibition the FP's of the medial zone (layer VIII, according to Rexed) were greatly increased, mainly in their negative components, their time-characteristics being altered. When the interval between excitations was 50 msec (in that case the inhibition was most pronounced) the medial FP's arose against a negative background, which was a late component of the previous activity evoked by conditioning excitation. The appearance of this late component was correlated with the development of inhibition of the cortical flexor response. At the same time a positive condition developed in the lateral zone, in the region of the nucleus biceps-semitendinosus, which indicated orientation in a lateral direction of the interneurons discharging in the medial zone at late periods after the conditioning excitation. Inhibition of the flexor response was accompanied by depression of the lateral FP's without change in their sign or in the time-structure of their components. It is suggested that cortical inhibition of the cortical flexor response arises at the interneuron level. The functional structure of that inhibitory pathway is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 2, pp. 185–193, March–April, 1971.  相似文献   

6.
Synaptic inhibition in an isolated nerve cell   总被引:5,自引:0,他引:5       下载免费PDF全文
Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes.  相似文献   

7.
The possible interaction among different sensory units in the frog tongue was studied using several single papillae dually innervated by the medial and lateral branches of the glossopharyngeal (IXth) nerve. The afferent activity in one branch exposed to NaCl stimulation of the papilla revealed marked inhibition after antidromic electrical stimulation (100 Hz, 30 s, and 3 V) of the other branch. The degree of inhibition depended on the number of sensory responses observed in the electrically stimulated branch as well as the nature of the stimulated sensory units. Statistical analysis suggested that antidromic activation of gustatory units conducting the responses to NaCl and quinine and slowly adapting mechanosensitive units produced a large antidromic inhibition amounting to 19-25%, but that of gustatory units conducting the responses to acetic acid and rapidly adapting mechanosensitive units gave rise to only a slight inhibition. To examine the differential effects of these sensory units in antidromic inhibition, antidromic impulses were evoked by chemical stimulation of the adjacent papilla neuronally connected with the dually innervated papilla under study. Antidromic volleys of impulses elicited by NaCl or quinine stimulation produced a large inhibition of the afferent activity in the other branch, as induced by NaCl stimulation of the dually innervated papilla. Plausible mechanisms of synaptic interaction in peripheral gustatory systems are considered.  相似文献   

8.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

9.
Extracellular microelectrode recordings were made from the auditory cortex of anaesthetized cats during acoustic click stimulation. The microelectrode of low resistance allowed to record evoked field potentials and unit discharges simultaneously. In distant extracellular leads the relation of unit discharges and field potentials was equivocal. Near extracellular leads revealed that the antidromic invasion of the somadendritic membrane by excitation is a frequency dependent process (just as evoked field potentials) while spike potentials can reliably be elicited from the initial segment at high frequencies. It is assumed that the excitation spreading from the initial segment to the soma-dendritic membrane represents an important component of the evoked potentials, and their frequency dependence may be traced back to inhibitions activated by afferent impulses.  相似文献   

10.
Water-wave and photic stimulation of the sensilla elicits synaptic potentials identical to those elicited by electrical stimulation of the segmental roots. Mechanical stimulation elicits a localized IPSP and a generalized EPSP in the RCs and an IPSP in the AE motoneurons. Photic stimulation gives rise to a generalized EPSP in the RCs alone. The impulse discharges elicited in the afferent fibers by the two kinds of stimuli is transmitted along the cord both anteriorly and posteriorly to the stimulated segment. This implies that the afferent impulses excite a pool of intersegmental neurons in each ganglion, which distribute their discharges to the adjacent ganglia. The evidence for occlusion between cordal and photically elicited volleys indicates that it shares with the sensillar input a common pool of interneurons. The possible functional significance of the inhibitory and excitatory inputs is discussed.  相似文献   

11.
In Bathynomus doederleini all of the cardioarterial valves located at the origin of the lateral arteries are dilated by impulses of lateral cardiac nerves. Tactile stimuli applied to sensillar setae depress impulse activities of the 1st and 5th lateral cardiac nerves. The 1st lateral cardiac nerve controls the valve of the lateral artery which runs to the walking-legs and viscera. The 5th lateral cardiac nerve controls the valve of the lateral artery which runs to the swimmeret muscles. The response indicates that tactile receptor reflexes bring about decreased haemolymph flow to the organs. Augmented swimmeret movements were always accompanied by an increased firing rate in the 5th lateral cardiac nerve. Artificial full protraction of swimmerets simultaneously induced excitation of the 5th lateral cardiac nerve and inhibition of the 1st lateral cardiac nerve. The excitation corresponds to an increase in haemolymph flow to the swimmerets, and the inhibition a decrease in haemolymph flow to walking-legs and viscera. Three kinds of mechanoproprioceptors which were activated by swimmeret movements were found. Two of the mechanoproprioceptors are located at the base of the basipodite. The other mechanoproprioceptor supplies processes to a nerve to the retractor muscles. Activation of three kinds of mechanoproprioceptors, induced by artificial swimmeret protraction, triggered lateral cardiac nerve reflex responses.Abbreviations LA lateral artery - LCN lateral cardiac nerve - RMN nerve to retractor muscles - StR stretch receptor  相似文献   

12.
The delayed and asynchronous firing of chromatolytic motoneurons in response to group I afferent volleys is shown to be evoked monosynaptically, there being an abnormally long and variable delay between onset of monosynaptic action and generation of impulse discharge. Intensity of monosynaptic excitatory action is reduced, and considerable variability in the form of successively evoked postsynaptic potentials is often observed. No evidence has been found for the development of excitatory group I polysynaptic pathways. Reduction in responsiveness of finer dendrites is indicated by the feeble "d" response evoked by an antidromic volley in a chromatolytic motor nucleus. Antidromic impulses appear to invade the cell bodies and coarse dendrites, but die out at points short of the normal extent of dendritic invasion. Vigorous firing of Renshaw cells can be elicited by antidromic volleys. Chromatolytic motoneurons appear to maintain reasonably normal resting membrane potentials, but are more susceptible to damage than are normal cells. Action potentials are large and usually overshoot the resting potential level. Post spike potentials are similar to those of normal cells except for a less prominent, or absent, early phase of depolarisation. In contrast with the reduced responsiveness of peripheral dendrites, there is a lowered threshold for antidromic and segmental reflex synaptic activation of the more central regions, probably the cell bodies and nearby coarse dendrites, of motoneurons undergoing chromatolysis.  相似文献   

13.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

14.
Although the magnitude of lateral inhibition in the retina of the compound eye of Limulus polyphemus depends strongly on the distance between ommatidia, the delay time τ between the response of one ommatidium and the consequent inhibition of another is independent of the distance between them and is approximately 0·1 sec (cf., e.g., Ratliff, Knight, Dodge &; Hartline,1973). We have recently shown (Coleman &; Renninger, 1974) that under appropriate circumstances the response r of such a retina to a temporally constant and spatially uniform excitation of amount e should be a succession of “bursts” and “rest periods”, each of duration τ, so that r, although spatially uniform, is a periodic function of time with period 2τ and mean value 12ϵ. Further, the periodic function r can have a fine structure in which there is repeated information about the duration and sequence, but not the amplitude, of any short pulses which occurred immediately (i.e. within a time interval of length τ) before the onset of steady uniform excitation. We derive here implications of several plausible general hypotheses about the functional form of lateral inhibition. We show that, under those of the considered hypotheses which are expected to hold for Limulus in strong light, periodic bursting behavior for r is stable and is rapidly approached if the excitation is held steady and uniform.  相似文献   

15.
Prey capture by a tentacle of the ctenophore Pleurobrachia elicits a reversal of beat direction and increase in beat frequency of comb plates in rows adjacent to the catching tentacle (Tamm and Moss 1985). These ciliary motor responses were elicited in intact animals by repetitive electrical stimulation of a tentacle or the midsubtentacular body surface with a suction electrode. An isolated split-comb row preparation allowed stable intracellular recording from comb plate cells during electrically stimulated motor responses of the comb plates, which were imaged by high-speed video microscopy. During normal beating in the absence of electrical stimulation, comb plate cells showed no changes in the resting membrane potential, which was typically about -60 mV. Trains of electrical impulses (5/s, 5 ms duration, at 5-15 V) delivered by an extracellular suction electrode elicited summing facilitating synaptic potentials which gave rise to graded regenerative responses. High K+ artificial seawater caused progressive depolarization of the polster cells which led to volleys of action potentials. Current injection (depolarizing or release from hyperpolarizing current) also elicited regenerative responses; the rate of rise and the peak amplitude were graded with intensity of stimulus current beyond a threshold value of about -40 mV. Increasing levels of subthreshold depolarization were correlated with increasing rates of beating in the normal direction. Action potentials were accompanied by laydown (upward curvature of nonbeating plates), reversed beating at high frequency, and intermediate beat patterns. TEA increased the summed depolarization elicited by pulse train stimulation, as well as the size and duration of the action potentials. TEA-enhanced single action potentials evoked a sudden arrest, laydown and brief bout of reversed beating. Dual electrode impalements showed that cells in the same comb plate ridge experienced similar but not identical electrical activity, even though all of their cilia beat synchronously. The large number of cells making up a comb plate, their highly asymmetric shape, and their complex innervation and electrical characteristics present interesting features of bioelectric control not found in other cilia.  相似文献   

16.
The effects of afferent vestibular impulses on single pontine reticular formation units and on a small filament of the IIIrd cranial nerve were recorded with tungsten microelectrodes in 40 curarized guinea pigs. Single-shock and repetitive electrical stimulations were applied by means of stimulating electrodes inserted bilaterally into the perilymphatic space of single ampullae of the anterior and lateral semicircular canals. The reticular unitary response consisted mainly in excitation of the resting discharge rate: most units showed vestibular convergence being affected by separate stimulation of the single four ampullae. the reticular evoked field and unitary potentials accounted for latency values ranging from 0.3 to 2.5 msec. As for the early latencies they can be interpreted as responses mediated by direct vestibulo-reticular fibres. A delimited vestibular projection field in the parameidan pontine reticular formation was not identified.  相似文献   

17.
Inhibitory interaction of receptor units in the eye of Limulus   总被引:4,自引:11,他引:4       下载免费PDF全文
The inhibition that is exerted mutually among the receptor units (ommatidia) in the lateral eye of Limulus has been analyzed by recording oscillographically the discharge of nerve impulses in single optic nerve fibers. The discharges from two ommatidia were recorded simultaneously by connecting the bundles containing their optic nerve fibers to separate amplifiers and recording systems. Ommatidia were chosen that were separated by no more than a few millimeters in the eye; they were illuminated independently by separate optical systems. The frequency of the maintained discharge of impulses from each of two ommatidia illuminated steadily is lower when both are illuminated together than when each is illuminated by itself. When only two ommatidia are illuminated, the magnitude of the inhibition of each one depends only on the degree of activity of the other; the activity of each, in turn, is the resultant of the excitation from its respective light stimulus and the inhibition exerted on it by the other. When additional receptors are illuminated in the vicinity of an interacting pair too far from one ommatidium to affect it directly, but near enough to the second to inhibit it, the frequency of discharge of the first increases as it is partially released from the inhibition exerted on it by the second (disinhibition). Disinhibition simulates facilitation; it is an example of indirect effects of interaction taking place over greater distances in the eye than are covered by direct inhibitory interconnections. When only two interacting ommatidia are illuminated, the inhibition exerted on each (decrease of its frequency of discharge) is a linear function of the degree of activity (frequency of discharge) of the other. Below a certain frequency (often different for different receptors) no inhibition is exerted by a receptor. Above this threshold, the rate of increase of inhibition of one receptor with increasing frequency of discharge of the other is constant, and may be at least as high as 0.2 impulse inhibited in one receptor per impulse discharged by the other. For a given pair of interacting receptors, the inhibitory coefficients are not always the same in the two directions of action. The responses to steady illumination of two receptor units that inhibit each other mutually are described quantitatively by two simultaneous linear equations that express concisely all the features discussed above. These equations may be extended and their number supplemented to describe the responses of more than two interacting elements.  相似文献   

18.
Electrical Properties of Hypothalamic Neuroendocrine Cells   总被引:7,自引:1,他引:6       下载免费PDF全文
Goldfish hypothalamic neuroendocrine cells have been investigated with intracellular recordings. The cells showed resting potentials of 50 mv and action potentials up to 117 mv followed by a long lasting and prominent diphasic hyperpolarizing afterpotential. The action potential occurred in two steps indicating sequential invasion. "Total" neuron (input) resistance was measured to be 3.3 x 107 Ω and total neuron time constant was 42 msec. Orthodromic volleys, produced by olfactory tract stimulation, generated graded excitatory postsynaptic potentials. These neuroendocrine cells seem, therefore, to have electrical membrane properties that are similar to those of other central neurons. Antidromic volleys (pituitary stimulation) produced inhibitory post-synaptic potentials whose latency was only slightly longer than that of the antidromic spike indicating the presence of recurrent collaterals. This finding suggests that the concept of the neuroendocrine cell as a neuron whose axon forms contacts only on blood vessels and not on other neurons or effector cells is too restrictive. Perfusion of the gills with dilute (0.3 per cent) sea water produced an inhibition of spontaneous activity. This inhibition is discussed in relation to recent work which demonstrates that goldfish hypothalamic hormones facilitate Na+ influx across the gill membrane.  相似文献   

19.
Introduction of short-term disturbances into the biomechanical structure of the human gait with simultaneous recording of the muscle electrical activity has been used to demonstrate that the human body has an intraspinal locomotor program consisting of an inhibition period, when afferent stimuli cause no response, and an excitation period, when the responses are expressed. The electromyographic profile of the leg muscles of subjects walking on a horizontal surface, up stairs, and down stairs may be divided into three zones. The H and M zones (the highest and moderate activities, respectively) correspond to the centrally programmed excitation period, and the L zone (low-amplitude activity), to the centrally programmed inhibition period. The difference between the former two zones is that the activity in the H zone is regular, whereas the M-zone activity is irregular and varies depending on biomechanical conditions. Apparently, the steady activity in the H zone is determined by the combined effect of the spinal generator of locomotion movements, cyclic supraspinal stimuli, and various (mainly proprioceptive) afferent impulses from the leg. An increase in the M-zone activity is mainly determined by afferent stimuli.  相似文献   

20.
The role of the lateral reticular nucleus and nuclei of the inferior olive in the formation of cerebellar cortical evoked potentials in response to vagus nerve stimulation was determined in experiments on 28 cats anesthetized with chloralose and pentobarbital. After electrolytic destruction of the lateral reticular nucleus, in response to vagus nerve stimulation, especially ipsilateral, lengthening of the latent period and a decrease in amplitude of evoked potentials were observed; after bilateral destruction of this nucleus, evoked potentials could be completely suppressed. It is concluded that the lateral reticular nucleus relays interoceptive impulses in the vagus nerve system on to the cerebellar cortex. Additional evidence was given by the appearance of spike responses of Purkinje cells, in the form of mainly simple discharges, to stimulation of the vagus nerve. After destruction of the nuclei of the inferior olive, the latent period and the number of components of evoked potentials in response to vagus nerve stimulation remained unchanged but their amplitude was reduced. The role of the nuclei of the inferior olive as a regulator of the intensity of the flow of interoceptive impulses to the cerebellum is discussed.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 290–299, May–June, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号