首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
  • 1 The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south‐west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.
  • 2 Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.
  • 3 Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.
  • 4 Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.
  • 5 Within‐stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between‐stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
  相似文献   

3.
  1. Southern pine beetle, Dendroctonus frontalis, has expanded its range further into the northeastern United States. This expansion threatens rare and ecologically valuable interior and coastal pitch pine barrens.
  2. Pitch pine barrens restoration and southern pine beetle infestation suppression often involve leaving downed dead wood that saproxylic insects can exploit.
  3. Semiochemical-baited traps were used to investigate the response of bark beetles and woodborers to restoration treatments at Rocky Point State Forest and the Albany Pine Bush Preserve, examples of coastal and interior pitch pine forests, respectively.
  4. A total of 29,598 saproxylic insects from 116 species of bark beetles and woodborers were captured at Rocky Point State Forest, while 23,117 individuals from 67 species were captured at Albany Pine Bush Preserve.
  5. Ips spp. were abundant at both sites with 28%–47% and 42%–74% of total collections at Rocky Point State Forest and Albany Pine Bush Preserve, respectively.
  6. Ips grandicollis did not respond to treatments at either site. However, Ips pini was found in higher numbers in thinned blocks in Rocky Point State Forest.
  相似文献   

4.
This paper presents the results of 20-year studies into the impact made by an experimental high-intensity fire on ecosystem components and postfire succession in a middle-taiga pine forest. About 44% of forest fuel loads burned down during the fire, and the emission of carbon was more than 18 t C/ha. As a result of the fire impact, trees died within 3 years after the fire, and this resulted in a significant accumulation of fuel loads. Twenty years after the fire, the biomass of forest fuel loads surpassed the prefire values 4 times, which led to the possibility of the origin of a repeated high-intensity fire. The initial stage of postfire succession in the pine forest is determined by forest vegetation conditions and takes place with the replacement of dominant grass and shrubs. The agrochemical and hydrothermal soil indicators were revealed to be changed after the fire, and this promoted improved conditions for the origin and development of natural regeneration sufficient for the formation of forest stand.  相似文献   

5.
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle? Location: Southern Appalachian Mountains, USA. Methods: We used LANDIS to model vegetation disturbance and succession on four grids representative of xeric landscapes in the southern Appalachians. Forest dynamics of each landscape were simulated under three disturbance scenarios: southern pine beetle, fire, and southern pine beetle and fire, as well as a no disturbance scenario. We compared trends in the abundance of pine and hardwood functional types as well as individual species. Results: Yellow pine abundance and open woodland conditions were best maintained by a combination of fire and southern pine beetle disturbance on both low elevation sites as well as mid‐elevation ridges & peaks. On mid‐elevation SE‐W facing slopes, pine woodlands were best maintained by fire alone. Conclusions: Our simulations suggest that fire can help maintain open pine woodlands in stands affected by southern pine beetle outbreaks.  相似文献   

6.
Juli G. Pausas 《Plant Ecology》2006,187(2):249-259
In the Mediterranean Basin, landscape patterns are strongly human-modified. In recent decades, because of industrialisation and rural exodus, many fields have been abandoned, generating changes in the landscape pattern. In this framework, I aim to study the effect of landscape pattern on landscape dynamic processes in the Mediterranean Basin using simulation models and considering that fire may interact with landscape pattern. First I generate a gradient of five artificial random landscapes. In each landscape I include four species types growing in the Mediterranean Basin, each type with different plant traits (Quercus, Pinus, Erica and Cistus types). In each landscape scenario, each species covers 30% of the landscape but with a different spatial distribution, from the coarsest-grained (L1) to the finest-grained (L5). Then, the dynamics of each of these five landscapes were simulated for 100 years using the FATELAND simulation model. Simulations were run with six fire regime scenarios in each landscape scenario (no fire, mean fire interval of 80, 40, 20, 10 and 5 years). Landscape attributes were computed for the initial and the final landscapes. As expected, the results suggest that, as expected, some species increase and others decrease depending on the fire regime. However, the results also show that different landscape structures produce different dynamics and thus that there is a clear interaction between landscape pattern and fire regime. For instance, coarse-grained spatial patterns generate slower dynamics than fine-grained patterns, and fire-sensitive species are maintained longer under coarse-grained patterns (i.e., fragmentation accelerates extinction of fire-sensitive species).A draft version of this paper was presented at the Special Symposium “Global Change and Landscape Fires” held during the IALE World Congress, in Darwin, Australia, 13–17 July 2003.  相似文献   

7.
8.
Treelines are expected to rise to higher elevations with climate warming; the rate and extent however are still largely unknown. Here we present the first multi-proxy palaeoecological study from the treeline in the Northwestern Swiss Alps that covers the entire Holocene. We reconstructed climate, fire and vegetation dynamics at Iffigsee, an alpine lake at 2,065 m a.s.l., by using seismic sedimentary surveys, loss on ignition, visible spectrum reflectance spectroscopy, pollen, spore, macrofossil and charcoal analyses. Afforestation with Larix decidua and tree Betula (probably B. pendula) started at ~9,800 cal. b.p., more than 1,000 years later than at similar elevations in the Central and Southern Alps, indicating cooler temperatures and/or a high seasonality. Highest biomass production and forest position of ~2,100–2,300 m a.s.l. are inferred during the Holocene Thermal Maximum from 7,000 to 5,000 cal. b.p. With the onset of pastoralism and transhumance at 6,800–6,500 cal. b.p., human impact became an important factor in the vegetation dynamics at Iffigsee. This early evidence of pastoralism is documented by the presence of grazing indicators (pollen, spores), as well as a wealth of archaeological finds at the nearby mountain pass of Schnidejoch. Human and fire impact during the Neolithic and Bronze Ages led to the establishment of pastures and facilitated the expansion of Picea abies and Alnus viridis. We expect that in mountain areas with land abandonment, the treeline will react quickly to future climate warming by shifting to higher elevations, causing drastic changes in species distribution and composition as well as severe biodiversity losses.  相似文献   

9.
The understorey vegetation in a lichen–Scots pine forest was monitored during 20 years before and after clear-felling. Plots with and without logging residues were compared concerning the general pattern of the vegetation dynamics and changes in species composition, dominance, richness, evenness and diversity. The succession of both treatments had a clear principal component analysis (PCA) pattern of a 'stepwise arch-shaped diverging' trend mainly driven by 'pioneer' lichens, 'reindeer' lichens and Calluna vulgaris. The difference between the residue treatments was significant regarding succession of vascular plants, bryophytes and 'reindeer' lichens. The nitrogen indicators Epilobium angustifolium and Deschampsia flexuosa were favoured on plots with logging residues.  相似文献   

10.
A Gleasonian model of succession (van der Valk, 1981) was used to predict the species composition of a freshwater marsh following fire. Seed bank samples from 5 vegetation types (Distichlis spicata (L.) Greene, Scirpus lacustris L., S. maritimus L., Typha spp., open water) were used in conjuction with plant life history characteristics to make predictions of post-fire species composition for each vegetation type and the entire study area. In general, predictions for specific vegetation types were not good, but were more accurate for the entire area. Stronge correlations for specific vegetation types may have been prevented by considering marsh vegetation types as discrete units, statistical sampling problems, competitive interactions, or more specific germination requirements of some species.  相似文献   

11.
12.
Question: Is post‐fire, medium‐term vegetation dynamics determined by land‐use or fire history prior to fire? Location: South‐facing slope in the Gallinera valley, Alicante province, eastern Spain. Methods: After mapping the land‐use and fire history of the study site using photo‐interpretation, we sampled vegetation structure on a set of plots representing the most frequent land‐use and fire history combinations on an area burned six years before sampling. We studied the effects of land‐use history, comparing the one‐fire land‐use trajectories. We analysed the effects of fire history; comparing one‐ and two‐fire plots for both previously cropped and uncropped areas. Results: Most variables were not significantly different between the earliest abandoned plots (abandoned at least 38 years before the fire) and the uncropped plots. On the most recently abandoned plots (abandoned between one and four years before the fire), the therophyte richness and the ratio of seeder: resprouter richness were significantly greatest. Different fire recurrences did not determine different post‐fire vegetation on either the uncropped or the early abandoned plots (all dominated by fire‐recruited seeder shrubs). The most recently abandoned plots had a lower resilience to fire. Conclusions: Land‐use history and recent pre‐fire land use, in particular, determined the post‐fire vegetation in the medium term. The vegetation composition converged during secondary succession among land‐use histories. Increasing fire recurrence had a small effect on mature plant communities, due to the combination of life‐history traits determining the response to fire of the dominant species.  相似文献   

13.
Olsson  Bengt A.  Lundkvist  Heléne  Staaf  Håkan 《Plant and Soil》2000,223(1-2):163-175
Nutrient concentrations in current and 1-year old needles from two Picea abies (L.) Karst and two Pinus sylvestris L. stands in Sweden were determined 8–10, 16–18 and 22–24 years after clear-felling and experimental manipulation of harvesting intensity. On all sites, three levels of harvest intensity had been applied in a randomized block design (n=4); (i) conventional stem-only harvesting, where all logging residues (i.e. tops, branches and needles) were evenly distributed on the ground, (ii) harvesting all above-ground tree parts except needles and (iii) above-ground whole-tree harvesting (no residues left on site). At stand age 8–10 years, nitrogen concentrations in the current year needles in plots where all residues or needles only were retained were higher than in whole-tree harvested plots, whereas concentrations of K, Ca and Mg were lower. The latter response was interpreted as a dilution effect. P:N, K:N, Ca:N, Mg:N, Mn:N and Zn:N were in general higher after whole-tree harvesting treatments than after the treatments where all residues or only needles had been left on site. At stand age 16–18 years, no significant differences in nitrogen concentrations were observed between treatments, but the levels of Ca, Mg and Mn in both current and 1-year-old needles were lower after whole-tree harvesting than after the treatments where logging residues remained on site. By contrast, potassium levels in the foliage were highest in treatments where only the needles were left on site, whereas the lowest levels were observed for treatments where all residues was left. At stand age 22–24 years, the treatment effects had diminished, except for the effects on Ca and K on the southern Norway spruce stand. It is concluded that the nutrient release from logging residues enhances nutrient uptake in trees of the succeeding forest generation, but this effect does not occur simultaneously for all elements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The impacts of climate change on Mediterranean‐type ecosystems may result from complex interactions between direct effects on water stress and subsequent modifications in flammability and fire regime leading to changes in standing biomass and plant species composition. We analysed these interrelations through a simulation approach combining scenarios of climate change developed from GCM results and a multispecies functional model for vegetation dynamics, SIERRA. A fire risk procedure based on weekly estimates of vegetation water stress has been implemented. Using climate data from 1960 to 1997, simulations of a typical maquis woodland community have been performed as baseline and compared with two climate scenarios: a change in the rainfall regime alone, and changes in both rainfall and air temperature. Climate changes are defined by an increase in temperature, particularly in summer, and a change in the rainfall pattern leading to a decrease in low rainfall events, and an increase in intense rainfall events. The results illustrate the lack of drastic changes in the succession process, but highlight modifications in the water budget and in the length of the drought periods. Water stress lower than expected regarding statistics on the current climate is simulated, emphasizing a long‐term new equilibrium of vegetation to summer drought but with a higher sensibility to rare events. Regarding fire frequency, climate changes tend to decrease the time interval between two successive fires from 20 to 16 years for the maquis shrubland and from 72 to 62 years in the forested stages. This increase in fire frequency leads to shrub‐dominated landscapes, which accentuates the yield of water by additional deep drainage and runoff.  相似文献   

15.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

16.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

17.
Knuuttila  S.  Pietiläinen  O. P.  Kauppi  L. 《Hydrobiologia》1994,275(1):359-369
The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.  相似文献   

18.
19.
Fire causes dramatic short-term changes in vegetation and ecosystem function, and may promote rapid vegetation change by creating recruitment opportunities. Climate warming likely will increase the frequency of wildfire in the Arctic, where it is not common now. In 2007, the unusually severe Anaktuvuk River fire burned 1039 km2 of tundra on Alaska''s North Slope. Four years later, we harvested plant biomass and soils across a gradient of burn severity, to assess recovery. In burned areas, above-ground net primary productivity of vascular plants equalled that in unburned areas, though total live biomass was less. Graminoid biomass had recovered to unburned levels, but shrubs had not. Virtually all vascular plant biomass had resprouted from surviving underground parts; no non-native species were seen. However, bryophytes were mostly disturbance-adapted species, and non-vascular biomass had recovered less than vascular plant biomass. Soil nitrogen availability did not differ between burned and unburned sites. Graminoids showed allocation changes consistent with nitrogen stress. These patterns are similar to those seen following other, smaller tundra fires. Soil nitrogen limitation and the persistence of resprouters will likely lead to recovery of mixed shrub–sedge tussock tundra, unless permafrost thaws, as climate warms, more extensively than has yet occurred.  相似文献   

20.
The study was carried out in the Pinus roxburghii Sargent (Chir pine) forest in the sub-tropical region of Garhwal Himalaya to assess the effect of fire on soil nutrient status at different altitudes (700 m, 800 m and 1000 m), soil depths (0–20 cm, 20–40 cm and 40–60 cm) and on under storey vegetation. The soil nutrients and under storey vegetation were assessed before fire (pre-fire) and after fire (post-fire). The results of the study indicate that fire plays an important role in soil nutrient status and under storey vegetation. The nutrients (soil organic carbon, nitrogen, phosphorus and potassium), decreased in post-fire assessment and with increasing altitudes, and soil depths, compared to pre-fire assessment. The under storey vegetation diminished after fire in all forest sites. The study concludes that in Chir pine forest, fire plays a role in reducing soil nutrients along the altitudinal gradient, soil depths and under storey vegetation. Thus, these nutrients can be saved through some management practices e.g. by early controlled burning and by educating local villagers about the negative impacts of severe wild fires on soil and vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号