首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In comparison with primary leaves of French bean plants grown under a photon flux density of 100 μeinstein m-2 s-1 (LP), leaves grown under 400 μeinstein m-2 s-1 (HP) were thicker (contained 82 to 104% more dry matter per blade area), had 44 to 48% higher stomatal frequency, 18 to 26% more chlorophyll (a + b) per leaf area unit and 31 to 42% less chlorophyll (a + b) per dry matter unit, 41% higher photosynthetic and 38% higher transpiration rates at light saturation, 33% higher stomatal conductance and 40% higher Photosystem 2 (H2O → K3[Fe(CN)6]) activity of isolated chloroplasts. There were no significant differences in the Photosystem 1 (TMPD/Ascorbate → MV) activity per unit amount of chlorophyll. Higher growth irradiance increased the ratio of frequencies of stomata in the upper/lower epidermes.  相似文献   

2.
State transitions are a low-light acclimation response through which the excitation of Photosystem I (PSI) and Photosystem II (PSII) is balanced; however, our understanding of this process in cyanobacteria remains poor. Here, picosecond fluorescence kinetics was recorded for the cyanobacterium Synechococcus elongatus using fluorescence lifetime imaging microscopy (FLIM), both upon chlorophyll a and phycobilisome (PBS) excitation. Fluorescence kinetics of single cells obtained using FLIM were compared with those of ensembles of cells obtained with time-resolved fluorescence spectroscopy. The global distribution of PSI and PSII and PBSs was mapped making use of their fluorescence kinetics. Both radial and lateral heterogeneity were found in the distribution of the photosystems. State transitions were studied at the level of single cells. FLIM results show that PSII quenching occurs in all cells, irrespective of their state (I or II). In S. elongatus cells, this quenching is enhanced in State II. Furthermore, the decrease of PSII fluorescence in State II was homogeneous throughout the cells, despite the inhomogeneous PSI/PSII ratio. Finally, some disconnected PBSs were resolved in most State II cells. Taken together our data show that PSI is enriched in the inner thylakoid, while state transitions occur homogeneously throughout the cell.

During state transitions, the ratio of quenched and unquenched photosystem II complexes is homogeneously changed in individual cells of the cyanobacterium Synechococcus elongatus.  相似文献   

3.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

4.
Water stress in the leaves was induced by gradual decreasing of substrate moisture in five-day cycles.The hydration level of the leaves was characterized by their water potential (ψw), osmotic potential (ψs), pressure potential ψp and water saturation deficit(ΔW sat ).The activities of Photosystems 1 and 2 were determined polarographically with Pt/Ag(AgOH) electrode as changes in oxygen concentration in chloroplast suspensions. The shape of light curves of Hill reaction was not influenced by leaf (ψw), hence both quantum efficiency and dark phase of this process were affected in a similar manner by water deficit. The activities of both photosystems measured at saturating photon flux density declined with the lowering of leaf (ψw) (in the range from -5 to -14 x 105 Pa) and the decrease in activity of Photosystem 2 was more rapid than that of Photosystem 1. The ratio of activities of Photosystems 1 and 2 was mildly enhanced by a lowering of (ψw), but it decreased with increasing age. The lowering of ψwinduced lowering in the chlorophyll a/b ratio thus concealing the usual ontogenetic course of this ratio.  相似文献   

5.
Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta was grown under light regimes of differing spectral qualities, which results in differences in the stoichiometries of the two photosynthetic reaction centres. The acclimative value of these changes was investigated by assessing photosynthetic function in these plants when exposed to two spectrally distinct actinic lights. Plants grown in an environment enriched in far-red light were better able to make efficient use of non-saturating levels of actinic light enriched in long-wavelength red light. Simultaneous measurements of chlorophyll fluorescence and absorption changes at 820 nm indicated that differences between plants grown under alternative light regimes can be ascribed to imbalances in excitation of photosystems I and II (PSI, PSII). Measurements of chlorophyll fluorescence emission and excitation spectra at 77 K provided strong evidence that there was little or no difference in the composition or function of PSI or PSII between the two sets of plants, implying that changes in photosynthetic stoichiometry are primarily responsible for the observed differences in photosynthetic function.Abbreviations Chl chlorophyll - FR far-red light - HF highirradiance FR-enriched light (400 mol·m–2·s–1, RFR = 0.72) - HW high-irradiance white light (400 mol·m–2 1·1 s–1RFR = 1.40) - LHCI, LHCII light-harvesting complex of PSI, PSII - qO quenching of dark-level chlorophyll fluorescence - qN non-photochemical quenching of variable chlorophyll fluorescence - qP photochemical quenching of variable chlorophyll fluorescence - R red light - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase We thank Dr. Sasha Ruban for assistance with the 77 K fluorescence measurements and for helpful discussions. This work was supported by Natural Environment Research Council Grant GR3/7571A.  相似文献   

6.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHCP1–3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

7.
In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by “electronic” and/or “excitonic” connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.  相似文献   

8.
Thylakoid membranes obtained from bean chloroplasts treated with bean galactolipase or phospholipase A2 (from Crotalus terr. terr.) showed marked changes in their polypeptide patterns when separated on SDS-PAGE. The obtained results have been discussed with regard to the relationship between chloroplast lipids and polypeptides originating from chlorophyll-protein complexes of bean thylakoids. A coexistence between galactolipids and the peripheral antennae in PS I complex and LHCP3 as well as a conspicuous role of phospholipids in PSI and PSII centre chlorophyll-protein complexes has to be underlined.Abbreviations CP1 chlorophyll a-protein complex of PSI - CPa chlorophyll a-protein complex of PSII - D10 digitonin subchloroplast particles enriched in PSII - D144 digitonin subchloroplast particles enriched in PSI - DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea - LHCP1-3 light harvesting chlorophyll a/b protein complexes - PAGE polyacrylamide gel electrophoresis - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tricine N-Tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

9.
Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b6f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser533 in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.The primary photochemical reactions of photosynthesis are catalyzed by the pigment-protein complexes photosystem II (PSII)1 and PSI (PSI), which are linked in series through the plastoquinone pool, the cytochrome b6f complex, and plastocyanin in the thylakoid membranes. Upon light absorption by the antenna systems of PSII and PSI, charge separations occur across the membrane that lead to the oxidation of water by PSII and electron flow to PSI and ultimately to the reduction of NADP+. Because the antenna systems of PSII and PSI have different pigment composition, they are differentially sensitized upon changes in light quality and quantity. However, photosynthetic organisms have the ability to adapt to changes in light. They balance energy input and consumption in the short term through dissipation of excess absorbed light energy into heat through non-photochemical quenching and regulate absorption of excitation energy between PSII and PSI through state transitions (supplemental Fig. 1). This reversible redistribution leads to an overall increase in photosynthetic quantum yield. State transitions occur when preferential excitation of PSII reduces the plastoquinone pool. This leads to the activation of a thylakoid protein kinase as a result of the docking of plastoquinol to the Qo site of the cytochrome b6f complex (1, 2) and to the phosphorylation of the polypeptides of the light-harvesting complex II (LHCII), a part of which migrates to PSI (state 2) (35). The process is reversible as preferential excitation of PSI inactivates the kinase and allows for dephosphorylation of LHCII and its return to PSII (state 1) (3, 6). In the green alga Chlamydomonas reinhardtii, the LHCII protein set consists of Type I (Lhcbm3, Lhcbm4, Lhcbm6, Lhcbm8, and Lhcbm9), Type II (Lhcbm5), Type III (Lhcbm2 and Lhcbm7), and Type IV (Lhcbm1 and Lhcbm10) proteins and of Lhcb7, CP26, and CP29 (7). Because of their nearly identical sequences and sizes, several of these Lhcbm proteins cannot be distinguished by SDS-PAGE. Most of them fractionate into four bands called P11 and P13 (Type I), P16 (Type IV), and P17 (Type III). Whereas P16 is not phosphorylated, phosphorylation events occur on P11, P13, and P17 (7, 8).The association of the mobile part of LHCII to PSI during a transition from state 1 to state 2 requires the PsaH subunit (9) and CP29, which also moves to PSI and is essential for docking LHCII to PSI (1012). The lateral displacement of LHCII from the PSII-rich grana to the PSI-rich lamellar thylakoid regions results in transfer to PSI of about 80% of the excitation energy absorbed by LHCII in C. reinhardtii (13), a considerably higher amount than in land plants in which only 15–20% of LHCII is mobile (3). In C. reinhardtii, state transitions are associated with a reorganization of the photosynthetic electron transfer chain with a switch from linear to cyclic electron flow during a transition from state 1 to state 2 (14, 15). Thus, cells produce ATP and NADPH in state 1 but only ATP in state 2. It appears that the major function of state transitions in this alga is to adjust the level of ATP and the ATP/NADPH ratio to cellular demands (5).Thylakoid membranes contain appressed grana and nonappressed stromal domains in which PSII and PSI are enriched, respectively. Because LHCII is a major stabilizer of the grana structure (16), the movement of LHCII from PSII to PSI is expected to lead to major rearrangements of these membranes during state transitions. Indeed, based on extensive electron microscope studies, it was proposed that fusion and fission events occur at the interface between the grana and stroma lamellar domains that lead to a remodeling of the membranes (17).Mapping of in vivo protein phosphorylation sites in photosynthetic membranes of Chlamydomonas revealed a total of 19 sites corresponding to 15 genes (18). It was shown that the major changes are clustered at the interface between the PSII core and the associated LHCII proteins during state transitions. Phosphorylation of the PSII core subunits D2 and PsbR and multiple phosphorylations of the minor LHCII antenna subunit CP29 were detected as well as phosphorylation of Lhcbm1, which belongs to the major LHCII complex (18).Although the phosphorylation of LHCII was observed many years ago (6), it is only recently that kinases involved in this process were uncovered. Fleischmann et al. (19) and Kruse et al. (20) used a genetic approach in C. reinhardtii with the aim of dissecting the signal transduction chain of state transitions. Two allelic mutants blocked in state 1 were identified that are affected in the Stt7 gene encoding a thylakoid Ser-Thr protein kinase that is required for LHCII phosphorylation during a transition from state 1 to state 2 (21). This Stt7 kinase is conserved in land plants and has an ortholog, STN7, in Arabidopsis (22).The 754-amino acid Stt7 kinase has a catalytic domain characteristic of Ser-Thr kinases (21). It contains a putative 41-amino acid transit peptide at its N-terminal end, and the protein is localized on the thylakoid membrane. Stt7 is associated with photosynthetic complexes including LHCII, PSI, and the cytochrome b6f complex (23). Stt7 also contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys residues that are critical for its activity and state transitions (23). Moreover, the level of Stt7 decreases considerably under state 1 conditions, and the kinase acts in catalytic amounts (23). However, it is not yet known whether this kinase directly phosphorylates LHCII or whether it is part of a kinase cascade involved in the signaling pathway of state transitions.In this work, we used a mass spectrometry-based approach (24) to map the in vivo Stt7-dependent protein phosphorylation sites within thylakoid membranes isolated from the green alga C. reinhardtii subjected to state 1 and state 2 conditions. In contrast with the earlier studies via direct MS/MS sequencing of the IMAC-enriched phosphorylated peptides from thylakoid proteins (18, 25), we performed additional LC-MS/MS-based analyses using alternating collision-induced dissociation and electron transfer dissociation of peptide ions. This approach revealed novel phosphorylation sites in LHCII polypeptides, in several other membrane and membrane-associated proteins, and in the thylakoid protein kinases Stt7 and Stl1, suggesting the existence of a thylakoid protein kinase cascade. Relative quantification of phosphorylated peptides labeled with stable isotopes determined the specific Stt7-dependent phosphorylation site in CP29 linker protein under state 2. Moreover, we also identified phosphorylation sites that are redox-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent. This mapping provides new insights into the regulatory network of protein phosphorylation in algal photosynthetic membranes during state transitions.  相似文献   

10.
C4 photosynthesis is a biochemical pathway that operates across mesophyll and bundle sheath (BS) cells to increase CO2 concentration at the site of CO2 fixation. C4 plants benefit from high irradiance but their efficiency decreases under shade, causing a loss of productivity in crop canopies. We investigated shade acclimation responses of Setaria viridis, a model monocot of NADP-dependent malic enzyme subtype, focussing on cell-specific electron transport capacity. Plants grown under low light (LL) maintained CO2 assimilation rates similar to high light plants but had an increased chlorophyll and light-harvesting-protein content, predominantly in BS cells. Photosystem II (PSII) protein abundance, oxygen-evolving activity and the PSII/PSI ratio were enhanced in LL BS cells, indicating a higher capacity for linear electron flow. Abundances of PSI, ATP synthase, Cytochrome b6f and the chloroplast NAD(P)H dehydrogenase complex, which constitute the BS cyclic electron flow machinery, were also increased in LL plants. A decline in PEP carboxylase activity in mesophyll cells and a consequent shortage of reducing power in BS chloroplasts were associated with a more oxidised plastoquinone pool in LL plants and the formation of PSII – light-harvesting complex II supercomplexes with an increased oxygen evolution rate. Our results suggest that the supramolecular composition of PSII in BS cells is adjusted according to the redox state of the plastoquinone pool. This discovery contributes to the understanding of the acclimation of PSII activity in C4 plants and will support the development of strategies for crop improvement, including the engineering of C4 photosynthesis into C3 plants.  相似文献   

11.
Owens TG 《Plant physiology》1986,80(3):739-746
The distribution of excitation energy between photosystems I and II (PSI and PSII) was investigated in the marine diatom Phaeodactylum tricornutum (Bohlin) using light-induced changes in fluorescence yield and rate of modulated O2 evolution. The intensity dependence of the fast fluorescence rise in dark adapted cells (±DCMU) suggests that light absorbed by the major antenna complex was not delivered preferentially to PSII but is more equally distributed between the photosystems. Reversible, slow fluorescence yield changes measured in the absence of DCMU were correlated with decreased initial fluorescence and rate constants for PSII photochemistry, increased variable fluorescence, alteration of the fluorescence excitation and emission spectra, and could be effected by either 510 nm (PSII) or 704 nm (PSI) light. Slow, reversible fluorescence yield changes were also observed in the presence of DCMU, but were characterized by a loss of both initial and variable fluorescence and could not be induced by PSI light. The absence of slow changes in the yield of fluorescence and rate of modulated O2 evolution, following addition or removal of PSI background light to modulated PSII excitation, does not support regulation of excitation energy density in PSI at the expense of PSII. The results suggest that adjustments are made at the level of excitation energy transfer to the PSII reaction center which prevent prolonged loss of photosynthetic capacity. Energy distribution is regulated by ionic distributions independently of the plastoquinone pool redox state. These differences in light-harvesting function are probably a response to the aquatic light field and may account for the success of diatoms in low and variable light environments.  相似文献   

12.
Various partial redox reactions involved in photosynthetic electron transport were studied in relation to the electron transport dependent incorporation of the water soluble chemical modifier, diazonium benzene sulfonic acid (DABS)* into chloroplast membranes. This electron transport dependent diazonium incorporation reflects a conformational change (unspecified at this time) in membrane components. The redox reaction(s) responsible for this conformational change was shown to be localized after the site of DCMU inhibition but before plastoquinone by the following evidence:
  1. Electron transport from water to lipophilic “Class III” electron acceptors such as dimethyl benzoquinone and high concentrations of dibromothymoquinone potentiate the extra DABS binding to the membranes. These compounds are reduced prior to or at the plastoquinone site.
  2. Electron transfer from water to silicomolybdate plus ferricyanide, a DCMU insensitive reaction, does not result in the incremental diazonium binding.
  3. Photosystem I cyclic electron flow mediated by menadione (anaerobic), which requires participation of plastoquinone does not give the extra diazonium binding.
The exact redox step responsible for the conformational change is not known for certain, but there is a possibility that cytochrome b-559 may be involved. This is suggested by the observation that diazonium treatment of chloroplasts during illumination but not in darkness, causes the conversion of cytochrome b-559 from the high potential form to the low potential form.  相似文献   

13.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   

14.
R. E. Glick  S. W. McCauley  A. Melis 《Planta》1985,164(4):487-494
The effect of light quality during plant growth of chloroplast membrane organization and function in peas (Pisum sativum L. cv. Alaska) was investigated. In plants grown under photosystem (PS) I-enriched (far-red enriched) illumination both the PSII/PSI stoichiometry and the electrontransport capacity ratios were high, about 1.9. In plants grown under PSII-enriched (far-red depleted) illumination both the PSII/PSI stoichiometry and the electron-transport capacity ratios were significantly lower, about 1.3. In agreement, steady-state electron-transport measurements under synchronous illumination of PSII and PSI demonstrated an excess of PSII in plants grown under far-red-enriched light. Sodium dodecylsulfate polyacrylamide gel electrophoretic analysis of chlorophyll-containing complexes showed greater relative amounts of the PSII reaction center chlorophyll-protein complex in plants grown under farred-enriched light. Additional changes were observed in the ratio of light-harvesting chlorophyll a/b protein to PSII reaction center chlorophyll-protein under the two different light-quality regimes. The results demonstrate the dynamic nature of chloroplast structure and support the notion that light quality is an important factor in the regulation of chloroplast membrane organization and-function.Abbreviations and symbols Chl chlorophyll - CPa PSII reaction center chlorophyll protein complex - CPI PSI chlorophyll protein complex - FR-D light depleted in far-red sensitizing primarily PSII - FR-E light enriched in far-red sensitizing primarily PSI - LHCP PSII light-harvesting chlorophyll a/b protein complex - P 700 primary electron donor of PSI - PSI, PSII photosystems I and II, respectively - Q primary electron acceptor of PSII  相似文献   

15.
Summary Selaginella lepidophylla, the resurrection plant, curls dramatically during desiccation and the hypothesis that curling may help limit bright light-induced damage during desiccation and rehydration was tested under laboratory conditions. Restraint of curling during desiccation at 25° C and a constant irradiance of 2000 mol m–2 s]t-1 significantly decreased PSII and whole-chain electron transport and the Fv/Fm fluorescence yield ratio following rehydration relative to unrestrained plants. Normal curling during desiccation at 37.5°C and 200 mol m–2 s–1 irradiance did not fully protect against photoinhibition or chlorophyll photooxidation indicating that some light-induced damage occurred early in the desiccation process before substantial curling. Photosystem I electron transport was less inhibited by high-temperature, high-irradiance desiccation than either PSII or whole-chain electron transport and PSI was not significantly affected by restraint of curling during desiccation at 25°C and high irradiance. Previous curling also helped prevent photoinhibition of PSII electron transport and loss of whole-plant photosynthetic capacity as the plants uncurled during rehydration at high light. These results demonstrate that high-temperature desiccation exacerbated photoinhibition, PSI was less photoinhibited than PSII or whole-chain electron transport, and stem curling ameliorated bright light-induced damage helping to make rapid recovery of photosynthetic competence possible when the plants are next wetted.  相似文献   

16.
A time-dependent loss of Photosystem II (PS II) activity seen in Anacystis nidulans grown without Ca2+ was paralleled by a loss in chlorophyll (Chl) a fluorescence of variable yield which reflects inhibition of Q reduction and of state changes. Both inhibitions were fully reversed by the addition of Ca2+ to the growth medium. The lack of state changes in Ca2+-depleted cells was confirmed in 77 K fluorescence difference spectra of light versus dark-adapted cells.Absorption spectra of control and of Ca2+-depleted cells were identical whether measured at room temperature or at 77 K. Fluorescence emission spectra measured at 39°C (cell growth temperature) demonstrated higher yields in Ca2+-depleted cells compared to controls. Fluorescence emission spectra at 77 K also produced higher yields in Ca2+-depleted cells but the increased fluorescence at this temperature occurred principally at 683 nm. The increased relative fluorescence yield in Ca2+-depleted samples results from light absorbed by phycocyanin (PC), but not from light absorbed almost exclusively by Chl. The 683 run fluorescence peak probably represents increased allophycocyanin (APC) emission as intact phycobilisomes become energetically disassociated from the photosynthetic apparatus. This inferred disassociation occurred only after PSII activity was mostly inhibited in Ca2+-depleted cells, and was not fully reversible.Abbreviations APC Allophycocyanin - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - EDTA ethylenediaminotetraacetic acid - PC phycocyanin - PS photosystem - Q primary quinone electron acceptor of Photosystem II also a quencher of Chl a fluorescence DPB-CIW Publ. No. 817  相似文献   

17.
Thermal acclimation and photoacclimation of photosynthesis were compared in Laminaria saccharina sporophytes grown at temperatures of 5 and 17 °C and irradiances of 15 and 150μmol photons m?2 s?1. When measured at a standard temperature (17°C), rates of light-saturated photosynthesis (Pmax) were higher in 5 °C-grown algae (c. 3.0 μmol O2 m?2 s?1) than in 17 °C-grown algae (c. 0.9 μmol O2 m-2 s-1). Concentrations of Rubisco were also 3-fold higher (per unit protein) in 5 °C-grown algae than in algae grown at 17 °C. Light-limited photosynthesis responded similarly to high temperature and low light Photon yields (α) were higher in algae grown at high temperature (regardless of light), and at 5 °C in low light, than in algae grown at 5 °C in high light Differences in a were correlated with light absorption; both groups of 17 °C algae and 5 °C low-light algae absorbed c. 75% of incident light, whereas 5 °C high-light algae absorbed c. 55%. Increased absorption was correlated with increases in pigment content PSII reaction centre densities and the fucoxanthin-Chl ale protein complex (FCP). Changes in a were also attributed, in part, to changes in the maximum photon yield of photosynthesis (0max). PSI reaction centre densities were unaffected by growth temperature, but the areal concentration of PSI in low-light-grown algae was twice that of high-light-grown algae (c. 160.0 versus 80.0 nmol m?2). We suggest that complex metabolic regulation allows L, saccharina to optimize photosynthesis over the wide range of temperatures and light levels encountered in nature.  相似文献   

18.
The effect of elevated temperature on electron flow to plastoquinone pool and to PSI from sources alternative to PSII was studied in barley (Hordeum vulgare L.) and maize (Zea mays L.) leaves. Alternative electron flow was characterized by measuring variable fluorescence of chlorophyll and absorption changes at 830 nm that reflect redox changes of P700, the primary electron donor of PSI. The treatment of leaves with elevated temperature resulted in a transient increase in variable fluorescence after cessation of actinic light. This increase was absent in leaves treated with methyl viologen (MV). The kinetics of P700+ reduction in barley and maize leaves treated with DCMU and MV exhibited two exponential components. The rate of both components markedly increased with temperature of the heat pretreatment of leaves when the reduction of P700+ was measured after short (1 s) illumination of leaves. The acceleration of both kinetic components of P700+ reduction by high-temperature treatment was much less pronounced when P700+ reduction rate was measured after illumination of leaves for 1 min. Since the treatment of leaves with DCMU and MV inhibited both the electron flow to PSI from PSII and ferredoxin-dependent cycling of electrons around PSI, the accelerated reduction of P700+ indicated that high temperature treatment activated electron flow to PSII from reductants localized in the chloroplast stroma. We conclude that the lesser extent of activation of this process by elevated temperature after prolonged illumination of heat-inhibited leaves is caused by depletion of the pool stromal reductants in light due to photoinduced electron transfer from these reductants to oxygen.  相似文献   

19.
Cyanobacterial Acclimation to Photosystem I or Photosystem II Light   总被引:9,自引:4,他引:5       下载免费PDF全文
The organization and function of the photochemical apparatus of Synechococcus 6301 was investigated in cells grown under yellow and red light regimes. Broadband yellow illumination is absorbed preferentially by the phycobilisome (PBS) whereas red light is absorbed primarily by the chlorophyll (Chl) pigment beds. Since PBSs are associated exclusively with photosystem II (PSII) and most of the Chl with photosystem I (PSI), it follows that yellow and red light regimes will create an imbalance of light absorption by the two photosystems. The cause and effect relationship between light quality and photosystem stoichiometry in Synechococcus was investigated. Cells grown under red light compensated for the excitation imbalance by synthesis/assembly of more PBS-PSII complexes resulting in high PSII/PSI = 0.71 and high bilin/Chl = 1.30. The adjustment of the photosystem stoichiometry in red light-grown cells was necessary and sufficient to establish an overall balanced absorption of red light by PSII and PSI. Cells grown under yellow light compensated for this excitation imbalance by assembly of more PSI complexes, resulting in low PSII/PSI = 0.27 and low bilin/Chl = 0.42. This adjustment of the photosystem stoichiometry in yellow light-grown cells was necessary but not quite sufficient to balance the absorption of yellow light by the PBS and the Chl pigment beds. A novel excitation quenching process was identified in yellow light-grown cells which dissipated approximately 40% of the PBS excitation, thus preventing over-excitation of PSII under yellow light conditions. It is hypothesized that State transitions in O2 evolving photosynthetic organisms may serve as the signal for change in the stoichiometry of photochemical complexes in response to light quality conditions.  相似文献   

20.
Several proteins of photosystem II (PSII) and its light-harvesting antenna (LHCII) are reversibly phosphorylated according to light quantity and quality. Nevertheless, the interdependence of protein phosphorylation, nonphotochemical quenching, and efficiency of electron transfer in the thylakoid membrane has remained elusive. These questions were addressed by investigating in parallel the wild type and the stn7, stn8, and stn7 stn8 kinase mutants of Arabidopsis (Arabidopsis thaliana), using the stn7 npq4, npq4, npq1, and pgr5 mutants as controls. Phosphorylation of PSII-LHCII proteins is strongly and dynamically regulated according to white light intensity. Yet, the changes in phosphorylation do not notably modify the relative excitation energy distribution between PSII and PSI, as typically occurs when phosphorylation is induced by “state 2” light that selectively excites PSII and induces the phosphorylation of both the PSII core and LHCII proteins. On the contrary, under low-light conditions, when excitation energy transfer from LHCII to reaction centers is efficient, the STN7-dependent LHCII protein phosphorylation guarantees a balanced distribution of excitation energy to both photosystems. The importance of this regulation diminishes at high light upon induction of thermal dissipation of excitation energy. Lack of the STN7 kinase, and thus the capacity for equal distribution of excitation energy to PSII and PSI, causes relative overexcitation of PSII under low light but not under high light, leading to disturbed maintenance of fluent electron flow under fluctuating light intensities. The physiological relevance of the STN7-dependent regulation is evidenced by severely stunted phenotypes of the stn7 and stn7 stn8 mutants under strongly fluctuating light conditions.Several proteins of PSII and its light-harvesting antenna (LHCII) are reversibly phosphorylated by the STN7 and STN8 kinase-dependent pathways according to the intensity and quality of light (Bellafiore et al., 2005; Bonardi et al., 2005). The best-known phosphorylation-dependent phenomenon in the thylakoid membrane is the state transition: a regulatory mechanism that modulates the light-harvesting capacity between PSII and PSI. According to the traditional view, “state 1” prevails when plants are exposed to far-red light (state 1 light), which selectively excites PSI. Alternatively, thylakoids are in “state 2” when plants are exposed to blue or red light (state 2 light), favoring PSII excitation. In state 1, the yield of fluorescence from PSII is higher in comparison with state 2 (for review, see Allen and Forsberg, 2001). State transitions are dependent on the phosphorylation of LHCII proteins (Bellafiore et al., 2005) and their association with PSI proteins, particularly PSI-H (Lunde et al., 2000). Under state 2 light, both the PSII core and LHCII proteins are strongly phosphorylated, whereas the state 1 light induces dephosphorylation of both the PSII core and LHCII phosphoproteins (Piippo et al., 2006; Tikkanen et al., 2006). In nature, however, such extreme changes in light quality rarely occur. The intensity of light, on the contrary, fluctuates frequently in all natural habitats occupied by photosynthetic organisms, thus constantly modulating the extent of thylakoid protein phosphorylation in a highly dynamic manner (Tikkanen et al., 2008a).The regulation of PSII-LHCII protein phosphorylation by the quantity of light is much more complex than the regulatory circuits induced by the state 1 and state 2 lights. Whereas changes in light quality induce a concurrent increase or decrease in the phosphorylation levels of both the PSII core (D1, D2, and CP43) and LHCII (Lhcb1 and Lhcb2) proteins, the changes in white light intensity may influence the kinetics of PSII core and LHCII protein phosphorylation in higher plant chloroplasts even in opposite directions (Tikkanen et al., 2008a). Indeed, it is well documented that low light (LL; i.e. lower than that generally experienced during growth) induces strong phosphorylation of LHCII but relatively weak phosphorylation of the PSII core proteins. Exposure of plants to high light (HL) intensities, on the contrary, promotes the phosphorylation of PSII core proteins but inhibits the activity of the LHCII kinase, leading to dephosphorylation of LHCII proteins (Rintamäki et al., 2000; Hou et al., 2003).Thylakoid protein phosphorylation induces dynamic migrations of PSII-LHCII proteins along the thylakoid membrane (Bassi et al., 1988; Iwai et al., 2008) and modulation of thylakoid ultrastructure (Chuartzman et al., 2008). According to the traditional state transition theory, the phosphorylation of LHCII proteins decreases the antenna size of PSII and increases that of PSI, which is reflected as a quenched fluorescence emission from PSII. Alternatively, subsequent dephosphorylation of LHCII increases the antenna size of PSII and decreases that of PSI, which in turn is seen as increased PSII fluorescence (Bennett et al., 1980; Allen et al., 1981; Allen and Forsberg, 2001). This view was recently challenged based on studies with thylakoid membrane fractions, revealing that modulations in the relative distribution of excitation energy between PSII and PSI by LHCII phosphorylation specifically occur in the areas of grana margins, where both PSII and PSI function under the same antenna system, and the energy distribution between the photosystems is regulated via a more subtle mechanism than just the robust migration of phosphorylated LHCII (Tikkanen et al., 2008b). It has also been reported that most of the PSI reaction centers are located in the grana margins in a close vicinity to PSII-LHCII-rich grana thylakoids (Kaftan et al., 2002), providing a perfect framework for the regulation of excitation energy distribution from LHCII to both PSII and PSI.When considering the natural light conditions, the HL intensities are the only known light conditions that in higher plant chloroplasts specifically dephosphorylate only the LHCII proteins but not the PSII core proteins. However, such light conditions do not lead to enhanced function of PSII. Instead, the HL conditions strongly down-regulate the function of PSII via nonphotochemical quenching of excitation energy (NPQ) and PSII photoinhibition (for review, see Niyogi, 1999). On the other hand, after dark acclimation of leaves and relaxation of NPQ, PSII functions much more efficiently when plants/leaves are transferred to LL despite strong phosphorylation of LHCII, as compared with the low phosphorylation state of LHCII upon transfer to HL conditions.The delicate regulation of thylakoid protein phosphorylation in higher plant chloroplasts according to prevailing light intensity is difficult to integrate with the traditional theory of state transitions (i.e. the regulation of the absorption cross-section of PSII and PSI by reversible phosphorylation of LHCII). Moreover, besides LHCII proteins, reversible phosphorylation of the PSII core proteins may also play a role in dynamic light acclimation of plants. Recently, we demonstrated that the PSII core protein phosphorylation is a prerequisite for controlled turnover of the PSII reaction center protein D1 upon photodamage (Tikkanen et al., 2008a). This, however, does not exclude the possibility that the strict regulation of PSII core protein phosphorylation is also connected to the regulation of light harvesting and photosynthetic electron transfer. Moreover, the interactions between PSII and LHCII protein phosphorylation, nonphotochemical quenching, and cyclic electron flow around PSI in the regulation of photosynthetic electron transfer reactions remain poorly understood. To gain a deeper insight into such regulatory networks, we explored the effect of strongly fluctuating white light on chlorophyll (chl) fluorescence in Arabidopsis (Arabidopsis thaliana) mutants differentially deficient in PSII-LHCII protein phosphorylation and/or the regulatory systems of NPQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号