首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saturable and reversible in vitro binding of [14C]riboflavin was found to occur on subcellular, sedimentable particles from maize coleoptiles and Cucurbita hypocotyls. The KD was ca. 6 M, the pH optimum was near 6.0, and the number of binding sites amounted to 0.1–0.5 M on a fresh-weight basis. When the reducing agent dithionite was present, riboflavin binding increased-the KD was 2.5 M, and the pH optimum above 8.0. The binding was specific: flavin mononucleotide (FMN) and flavin adenosine-dinucleotide (FAD) bound less tightly to these sites than riboflavin and another major soluble flavin, the previously described riboflavin-analog FX, occurring in grass coleoptiles. These flavin-binding sites were localized on vesicles derived from plasmalemma and endoplasmic reticulum by analyzing sucrose and metrizamide density gradients and marker enzymes.Abbreviations CCO cytochrome-c oxidase - CCR NADH-cytochrome-c oxidoreductase - ER endoplasmic reticulum - FAD flavin-adenosinedinucleotide - FMN flavin mononucleotide - MOPS N-morpholino-3-propansulfonic acid - NADH reduced -nicotinamide dinucleotide - nKP n thousand times g pellet - NPA l-naphthylphthalamic acid - PM plasma membrane, plasmalemma - RBF riboflavin - IAA indoleacetic acid - BA benzoic acid  相似文献   

2.
Corneal collagen cross-linking (CXL) has been described as a promising therapy for keratoconus. According to standard CXL protocol, epithelium should be debrided before treatment to allow penetration of riboflavin into the corneal stroma. However, removal of the epithelium can increase procedure risks. In this study we aim to evaluate stromal penetration of a biocompatible riboflavin-based nanoemulsion system (riboflavin-5-phosphate and riboflavin-base) in rabbit corneas with intact epithelium. Two riboflavin nanoemulsions were developed. Transmittance and absorption coefficient were measured on corneas with intact epithelia after 30, 60, 120, 180, and 240 minutes following exposure to either the nanoemulsions or standard 0.1% or 1% riboflavin-dextran solutions. For the nanoemulsions, the epithelium was removed after measurements to assure that the riboflavin had passed through the hydrophobic epithelium and retained within the stroma. Results were compared to de-epithelialized corneas exposed to 0.1% riboflavin solution and to the same riboflavin nanoemulsions for 30 minutes (standard protocol). Mean transmittance and absorption measured in epithelialized corneas receiving the standard 0.1% riboflavin solution did not reach the levels found on the debrided corneas using the standard technique. Neither increasing the time of exposure nor the concentration of the riboflavin solution from 0.1% to 1% improved riboflavin penetration through the epithelium. When using riboflavin-5-phosphate nanoemulsion for 240 minutes, we found no difference between the mean absorption coefficients to the standard cross-linking protocol (p = 0.54). Riboflavin nanoemulsion was able to penetrate the corneal epithelium, achieving, after 240 minutes, greater stromal concentration when compared to debrided corneas with the standard protocol (p = 0.002). The riboflavin-5-phosphate nanoemulsion diffused better into the stroma than the riboflavin-base nanoemulsion.  相似文献   

3.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

4.
《Experimental mycology》1991,15(4):336-345
The maximal phototropic bending angle of thePhycomyces sporangiophore (spph) was always smaller than 90° from the vertical. Experimental results, using a clinostat apparatus and both a gravitropic mutant and the wild-type spphs placed vertically or horizontally and illuminated from different directions, revealed that this angle resulted from a balance between a negative gravitropism and a phototropism whose direction (positive or negative) and magnitude depended on the bending angle of the spph, because of the involvement of the optical properties of the spph, probably the ratio of the maximal light-fluence rate between the proximal side (IP,max) and the distal side (ID,max) of the spph. Shadowing of the extension zone by the sporangium was estimated to be complete only when the bending angle was larger than 86.4° from the vertical.  相似文献   

5.
Riboflavin is a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which work as cofactors of numerous enzymes. Understanding the supply system of these cofactors in bacteria, particularly those used for industrial production of value added chemicals, is important given the pivotal role the cofactors play in substrate metabolism. In this work, we examined the effect of disruption of riboflavin utilization genes on cell growth, cytoplasmic flavin levels, and expression of riboflavin transporter in Corynebacterium glutamicum. Disruption of the ribA gene that encodes bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase in C. glutamicum suppressed growth in the absence of supplemental riboflavin. The growth was fully recovered upon supplementation with 1 μM riboflavin, albeit at reduced intracellular concentrations of FMN and FAD during the log phase. Concomitant disruption of the ribA and ribM gene that encodes a riboflavin transporter exacerbated supplemental riboflavin requirement from 1 μM to 50 μM. RibM expression in FMN-rich cells was about 100-fold lower than that in FMN-limited cells. Mutations in putative FMN-riboswitch present immediately upstream of the ribM gene abolished the FMN response. This 5′UTR sequence of ribM constitutes a functional FMN-riboswitch in C. glutamicum.  相似文献   

6.
7.
A method is described for determining riboflavin 5′-phosphate (FMN) and flavin adenine dinucleotide (FAD) in mixtures by fluorimetric titration with the FMN-specific apoprotein of flavodoxin from Peptostreptococcus elsdenii. Accurate determinations can be carried out in the presence of a variety of compounds that decrease the fluorescence yield of FMN; the method may therefore be especially useful in the analysis of crude protein-free extracts of biological materials.  相似文献   

8.
The bacterium Streptomyces davaonensis produces the antibiotic roseoflavin, which is a riboflavin (vitamin B2) analog. The key enzyme of roseoflavin biosynthesis is the 8-demethyl-8-amino-riboflavin-5ʹ-phosphate (AFP) synthase RosB which synthesizes AFP from riboflavin-5ʹ-phosphate. AFP is not a substrate for the last enzyme of roseoflavin biosynthesis the N, N-dimethyltransferase RosA, which generates roseoflavin from 8-demethyl-8-amino-riboflavin (AF). Consequently, the roseoflavin biosynthetic pathway depends on a phosphatase, which dephosphorylates AFP to AF. Here, we report on the identification and characterization of such an AFP phosphatase which we named RosC. The gene rosC is located immediately downstream of rosA and both genes are part of a cluster comprising 10 genes. Deletion of rosC from the chromosome of S. davaonensis led to reduced roseoflavin levels in the corresponding recombinant strain. In contrast to wild-type S. davaonensis, cell-free extracts of the rosC deletion strain did not catalyze dephosphorylation of AFP. RosC was purified from an overproducing Escherichia coli strain. RosC is the fastest enzyme of roseoflavin biosynthesis (kcat 31.3 ± 1.4 min–1). The apparent KM for the substrate AFP was 34.5 µM. Roseoflavin biosynthesis is now completely understood––it takes three enzymes (RosB, RosC, and RosA) to convert the flavin cofactor riboflavin-5ʹ-phosphate into a potent antibiotic.  相似文献   

9.
Koga  K.  Sato  T.  Ootaki  T. 《Planta》1984,162(2):97-103
The sporangiophore (spph) of a piloboloid mutant, genotype pil, of Phycomyces ceases elongation and expands radially in the growth zone shortly after reaching the developmental stage IV b. The pil spph is always negatively phototropic to unilateral visible light when its diameter exceeds 210 m. Photoinduction of spph initiation, light-growth response, threshold of light energy fluence rate for the negative phototropism, avoidance and gravitropism in the pil mutant are all normal. In liquid paraffin, the pil spph shows negative phototropism as does the wild-type spph. Genetic analyses indicate that the negative phototropism of the pil mutant is governed by the phenotypic characteristics of pil but not by specific gene(s) responsible for negative phototropism. These facts imply that the reverse phototropism of the pil mutant results from a loss of the convergent lens effect of the cell because of the increase in cell diameter.Abbreviations spph(s) sporangiophore(s) - wt(s) wild type(s)  相似文献   

10.
Analogs of riboflavin that were altered at positions N(3), 8α, and N(10) of the 7,8-dimethylisoalloxazine ring were immobilized by covalent attachment to aminoalkylated agarose and polyacrylamide beads. These materials were used for affinity chromatographic purification of the riboflavin-carrier protein from egg white, egg yolk, and blood from laying hens, of flavokinase from rat liver, and of partially purified flavodoxin from Azotobacter vinelandii (FMN). The apo-carrier protein, which tightly complexes riboflavin (Kd ≈ 2 nm), was bound by the N(3)-, 8α-, and N(10)-flavinyl beads and was selectively displaced in moderate to high yield by 10 μm riboflavin or 1 m NaCl at pH 3.5. Flavokinase, which complexes less tightly with riboflavin (Km ≈ 12 μm), was bound by the 8α- and N(10)-flavinyl beads. Binding to the latter was sufficiently tight that the addition of riboflavin was needed to displace flavokinase from the beads. The A. vinelandii flavodoxin, which normally complexes riboflavin 5′-phosphate (K3 ≈ 5 nm) but less avidly complexes riboflavin (Kd ≈ 0.6 μm), was bound by the N(10)-flavinyl beads and eluted in low yield upon addition of FMN; most of the apoprotein denatured on the column despite the inclusion of thiol-protecting reagents. These flavin affinity materials may be generally useful for isolating a variety of other proteins that bind riboflavin.  相似文献   

11.
The hypothesis was tested that reversible riboflavin (RF)-binding sites are part of the photoreceptor in Euglena gracilis. Published evidence shows that the phototactic stimulus — with a flavin-type action spectrum — is perceived at the paraflagellar body (PFB). Flagella with PFBs were isolated from Euglena gracilis by a combined cold and Ca2+ shock. Saturable binding of [14C]RF was demonstrated with such preparations, in the oxidized state as well as under reducing conditions in the presence of dithionite. Affinities for RF were high: K D (oxidized)=0.08 M, and K D (reduced)=0.7 M. Flavin mononucleotide and flavin adenine dinucleotide showed lower binding affinities. The in vitro RF binding per unit of protein was enriched approximately tenfold in the flagellar preparations when compared with homogenates of whole cells. The number of (reduced) binding sites per entire flagellum was determined to be in the order of 106. This number is in line with published estimates of chromophores bound in or at the PFB.Abbreviations FAD flavin adenine dinucleotide - FMN flavin mononucleotide - PFB paraflagellar body - RF riboflavin This work was supported by the Deutsche Forscungsgemeinschaft.  相似文献   

12.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5′ of the ribityl side chain. The lumazine 5′-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

13.
The individual flavin species of axenic Entamoeba histolytica were assayed: separated riboflavin was assayed by the lumiflavin method; flavin-adenine dinucleotide (FAD), by an enzymatic method; flavin mononucleotide (FMN) was calculated from the difference, total flavin minus FAD and riboflavin. The amount of flavin in micrograms per grams fresh cells follows: total flavin, 7.6 ± 0.9 calculated as riboflavin; riboflavin, 1.6 ± 0.7; FMN, 6.6 ± 0.5; and FAD, 1.2 ± 0.1. Recalculated to nanomoles per milligrams total amebal protein these values were: total flavin, 0.21; riboflavin, 0.04; FMN, 0.15; and FAD, 0.02. The identity of each flavin was confirmed by a paper chromatographic method. Analyses on Panmede, the main source of flavins in the TP-S-1 medium, indicate that it contains all three forms of flavin. Its contribution to growth medium in micrograms per milliliters: riboflavin, 2.1 ± 0.3; FMN, 0.6 ± 0.1; and FAD, 0.4 ± 0.1. The in vivo biosynthesis of FMN and FAD from riboflavin by E. histolytica is demonstrated. A new and convenient method was found to separate riboflavin from flavin nucleotides in tissue extracts.  相似文献   

14.
Werner Schmidt  Paul Galland 《Planta》1999,208(2):274-282
Light-induced absorbance changes (LIACs), which are associated with early photochemical events of blue-light transduction, were detected in growing zones of Phycomyces sporangiophores. The novel LIACs meet all the essential requirements for a spectrophotometric photoreceptor assay which was previously unavailaible for blue-light receptors (cryptochromes). In-vivo absorption spectra of growing zones were derived from reflection spectra which were measured with a novel rapid-scan spectrophotometer. To detect photoreceptor-associated absorbance changes white mutants were employed which lack the interfering bulk pigment β-carotene. Blue and white light, not however red light, induced in these strains absorbance changes near 460–490 and 600–620 nm. The LIACs were absent in light-insensitive mutants with defects in the genes madA, madB and madC. Because these genes affect photosensory adaptation and the blue-light receptor itself, the novel in-vivo LIACs must be associated with photochemical events which occur early in the transduction chain. The spectral characteristics of the LIACs are in accordance with a blue- and red-light absorbing flavosemiquinone which is generated upon light absorption by an oxidized flavin receptor. It is proposed that the flavosemiquinone functions itself as photoreceptor which mediates several red-light responses of Phycomyces. Received: 28 September 1998 / Accepted: 25 November 1998  相似文献   

15.
Riboflavin (RF) plays an important role in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Human serum albumin (HSA) is an important protein involved in the transportation of drugs, hormones, fatty acid and other molecules which determine the biodistribution and physiological fate of these molecules. In this study, we have investigated the interaction of riboflavin RF with HSA under simulative physiological conditions using various biophysical, calorimetric and molecular docking techniques. Results demonstrate the formation of riboflavin–HSA complex with binding constant in the order of 104 M?1. Fluorescence spectroscopy confirms intermediate strength having a static mode of quenching with stoichiometry of 1:1. Experimental results suggest that the binding site of riboflavin mainly resides in sub-domain IIA of HSA and that ligand interaction increases the α-helical content of HSA. These parameters were further verified by isothermal titration calorimetry ITC which confirms the thermodynamic parameters obtained by fluorescence spectroscopy. Molecular docking was employed to suggest a binding model. Based on thermodynamic, spectroscopic and computational observations it can be concluded that HSA-riboflavin complex is mainly stabilized by various non-covalent forces with binding energy of ?7.2 kcal mol?1.  相似文献   

16.
A procedure is described which unequivocally demonstrates the presence of adenosine 3′:5′-cyclic monophosphate in Phaseolus vulgaris. Its concentration was determined spectrophotometrically at 2·6–9·2 nmol g?1 of tissue (dry wt) for 6-day-old seedlings and about one-tenth of this in 13-day-old plants.  相似文献   

17.
In the presence of azaserine an inhibitor of phosphoribosylformylglycineamidine synthetase (EC 6.3.5.3) the incorporation of [2-14C]glycine into 5′-phosphoribosylglycineamide and its formyl derivative was measured in 105,000g supernatant fraction prepared from a homogenate of adrenal cortex. Corticotropin at a level of 1-0.001 nm markedly stimulated in 10 min these early steps of purine biosynthesis. The stimulus was in addition to that achieved with added glucose-6-phosphate and NADP. Increased synthesis of precursors of purine nucleotides is due to ACTH activation of adrenal glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and thus the pentose cycle with an increase in 5′-phosphoribosylpyrophosphate. The generation of this latter compound is presumed to be a rate-limiting factor to 5′-phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14) the first enzyme of de novo purine biosynthesis.  相似文献   

18.
To help identify components of the blue-light photoreceptor system for phototropism in Phycomyces blakesleeanus Bgff., proteins from a microsomal fraction obtained from synchronous sporangiophores were studied. By two-dimensional gel electrophoresis, two proteins (FP1, FP2) with covalently bound flavins were found. FP1 has a molecular weight of 71 000 and an isoelectric point of 6.6; FP2 has a molecular weight of 59 000 and an isoelectric point of 6.5. These flavoproteins were purified by column chromatography and gel filtration while assaying for flavins by fluorescence. The relative concentrations of FP1 and FP2 were affected by light applied during growth. These flavoproteins are likely components of the blue-light photoreceptor complex mediating phototropism in Phycomyces.Abbreviations 10 k pellet 10 000-g pellet - 100 k pellet 100 000-g pellet - FP1, FP2 proteins with covalently bound flavins having molecular weights of 71 000 and 59 000 and isoelectric points of 6.6 and 6.5, respectively  相似文献   

19.
20.
One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe3+ to soluble Fe2+, followed by transport of Fe2+ to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is essential for intestinal colonization by the important pathogen Campylobacter jejuni and may be of particular importance under low-oxygen conditions. In this study, the links among riboflavin biosynthesis, ferric reduction, and iron acquisition in C. jejuni NCTC11168 have been investigated. A riboflavin auxotroph was generated by inactivation of the ribB riboflavin biosynthesis gene (Cj0572), and the resulting isogenic ribB mutant only grew in the presence of exogenous riboflavin or the riboflavin precursor diacetyl but not in the presence of the downstream products flavin adenine dinucleotide and flavin mononucleotide. Riboflavin uptake was unaffected in the ribB mutant under iron-limited conditions but was lower in both the wild-type strain and the ribB mutant under iron-replete conditions. Mutation of the fur gene, which encodes an iron uptake regulator of C. jejuni, resulted in an increase in riboflavin uptake which was independent of the iron content of the medium, suggesting a role for Fur in the regulation of the as-yet-unknown riboflavin transport system. Finally, ferric reduction activity was independent of iron availability in the growth medium but was lowered in the ribB mutant compared to the wild-type strain and, conversely, increased in the fur mutant. Taken together, the findings confirm close relationships among iron acquisition, riboflavin production, and riboflavin uptake in C. jejuni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号