首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate a significance of the expression of brain-derived neurotrophic factor (BDNF) in the activated microglia/macrophages of the injured central nervous system, we examined BDNF actions on or BDNF synthesis by macrophages cultured from the mouse peritoneal cavity. They synthesized BDNF and neurotrophin-3 (NT-3) in addition to expressing high-affinity neurotrophin receptors, full-length TrkB (FL), truncated TrkB (TK(-)), and TrkC, thus suggesting an autocrine influence of BDNF and NT-3. BDNF, but not NT-3, enhanced phagocytic activity and stimulated synthesis/secretion of interleukin-1beta in the same manner as lipopolysaccharide (LPS). Furthermore, there was a significant correlation of the phagocytic activity with the expression of BDNF or TrkB (FL). These results imply that the phagocytic activity of macrophages depends on BDNF synthesis and/or TrkB (FL) expression, suggesting that BDNF participates in the activation processes of macrophages by acting in an autocrine manner.  相似文献   

2.
Brain-derived neurotrophic factor (BDNF) has been reported to exist not only in nervous tissue but also in serum. In contrast to the wealth of knowledge regarding the various physiological functions of BDNF in the nervous system, information about possible roles in other systems is limited. To elucidate the physiological function of serum BDNF in primates, it is first necessary to establish a method to determine the levels of BDNF in serum of primates. In the present study, we established an enzyme-linked immunosorbent assay (ELISA) method which we used to measure levels of serum BDNF in non-human primates. We found that serum BDNF levels were similar among several species of primates. The present results suggest that our BDNF ELISA may be useful in measuring serum BDNF concentration as a physiological marker, and that levels of serum BDNF may be similar among primates including humans. Electronic Publication  相似文献   

3.
李莎  王蓁  袁芳  张伟  李敏 《现代生物医学进展》2015,15(30):5917-5920
目的:观察脑源性神经生长因子(BDNF)及其受体酪氨酸激酶受体B(TrkB)在子宫内膜癌中的表达,并分析其临床意义。方法:采用免疫组织化学染色方法对11例正常子宫内膜、16例增生子宫内膜、31例子宫内膜癌组织进行BDNF及其受体TrkB表达的检测,并分析子宫内膜癌组织中BDNF、TrkB的表达与其临床病理特征的关系。结果:BDNF及TrkB在正常子宫内膜中呈阴性或弱阳性表达,在增生子宫内膜及子宫内膜癌中呈阳性表达,三组间的差异存在统计学意义(P0.05)。子宫内膜癌中BDNF、TrkB的表达与肿瘤细胞分化程度、临床病理分期、肌层浸润深度、淋巴结转移的有无均显著相关(P0.05)。结论:BDNF及其受体TrkB的相互作用可能在子宫内膜癌的发生发展中起重要作用,二者联合检测可能对子宫内膜癌的术前病情评估及术后预后预测均具有重要的参考意义。  相似文献   

4.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.  相似文献   

5.
The present study was undertaken to examine whether NKH477, a novel and potent water-soluble forskolin derivative, stimulates adenylyl cyclase and regulates brain-derived neurotrophic factor (BDNF) and TrkB expression in the rat brain. Administration of NKH477 at a dose of 1.0 mg/kg, but not 0.1 mg/kg, increased levels of cyclic AMP (cAMP) in a time-dependent manner in frontal cortex and hippocampus. Repeated administration of NKH477 (1.0 mg/kg) for 7 or 14 days also increased levels of cAMP in these two brain regions, indicating that the response does not desensitize with chronic treatment. In addition, administration of NKH477 at the 1 mg/kg dose increased the expression of BDNF and TrkB mRNA in frontal cortex and hippocampus. This effect was observed after single, as well as repeated (7 or 14 days), administration of NKH477. These results demonstrate that NKH477 administration rapidly increases cAMP levels in brain and provides evidence that stimulation of this second messenger system increases the expression of BDNF and TrkB mRNA.  相似文献   

6.
巨细胞病毒感染可影响儿童的学习记忆能力,是导致儿童智力残疾的主要原因之一。长期以来相关研究主要集中于巨细胞病毒先天性感染对学习记忆的影响及其机制。近年来,越来越多研究也开始关注围生期及获得性巨细胞病毒感染。本综述旨在对近期的巨细胞病毒感染致学习记忆损伤的研究现状加以概括总结。  相似文献   

7.
In humans, several pathologies are associated with disturbances of the respiratory control, some of them including alteration in the brain-derived neurotrophic factor (BDNF) signalling pathway. BDNF has long been known as a neurotrophic factor involved in survival, differentiation and maintenance of neuronal populations in the peripheral and central nervous system. More recently BDNF has also been discovered to be a potent neuromodulator with acute effects on neuronal excitability and synaptic plasticity. Animals deleted for the gene encoding BDNF exhibit respiratory alteration suggesting an important but yet undefined role of the neurotrophin in respiratory rhythmogenesis either by a trophic and/or an acute action. The possibility that BDNF might exert an acute regulatory role on the rhythmic activity of the respiratory generator of the pre-B?tzinger complex has been recently examined in newborn mice in vitro. Results obtained, reviewed in the present paper, will help getting insights in respiratory rhythm regulatory mechanisms that involve BDNF signalling.  相似文献   

8.
Li C  Li C  Zhu X  Wang C  Liu Z  Li W  Lu C  Zhou X 《Theriogenology》2012,77(3):636-643
The neurotrophin family of proteins promote the survival and differentiation of nerve cells and are thought to play an important role in development of reproductive tissues. The objective of the present study was to detect the presence of Brain-derived neurotrophic factor (BDNF) and its receptor TrkB in bovine sperm, and explore the potential role of BDNF in sperm function. We demonstrated that both the neorotrophin BDNF and the tyrosine kinase receptor protein TrkB were expressed in ejaculated bovine sperm. Furthermore, BDNF per se was secreted by sperm. Insulin and leptin secretion by bovine sperm were increased (P < 0.01) when cells were exposed to exogenous BDNF, whereas insulin was decreased by K252a. Therefore, we inferred that BDNF could be a regulator of sperm secretion of insulin and leptin through the TrkB receptor. Sperm viability and mitochondrial activity were both decreased (P < 0.05) when the BDNF/TrkB signaling pathway was blocked with K252a. Furthermore, BDNF promoted apoptosis of bovine sperm through TrkB binding (P < 0.05). In conclusion, these observations provided evidence that BDNF secreted by bovine sperm was important in regulation of insulin and leptin secretion in ejaculated bovine sperm. Furthermore, BDNF may affect sperm mitochondrial activity and apoptosis, as well as their viability.  相似文献   

9.
Brain-derived neurotrophic factor (BDNF) is a protein that promotes the survival of neurons. It is widely thought to possess clinical potential for the treatment of neurodegenerative diseases, and in recent years, has been found to play a role in the pathogenesis of some tumours. BDNF is thought to bind to its cellular receptors trkB and p75(NTR) primarily by way of solvent-exposed loops on the BDNF dimer. In this paper, we describe our recent progress towards the development of small peptides as mimetics and inhibitors of BDNF. Two classes of peptides were prepared: disulphide-constrained monomeric monocyclic peptides designed to mimic a single solvent-exposed loop; and homo- and heterodimeric bicyclic peptides designed to mimic pairs of loops. Each peptide was examined in cultures of embryonic chick dorsal root ganglion sensory neurons, both alone, and in competition with BDNF. All peptides were found to inhibit BDNF-mediated neuronal survival, while one--a dimeric peptide based on the two loop 4 regions of BDNF--behaved as a partial BDNF-like agonist. The work described in this paper supports the proposed receptor-binding role of loops 1, 2, and 4 of BDNF, and provides valuable steps towards our long-term goal of developing BDNF mimetics and inhibitors for clinical use.  相似文献   

10.
目的观察腹腔注射米诺环素对改良Allen’s法造成的不完全脊髓损伤大鼠脊髓中脑源性神经营养因子以及神经营养因子3表达的影响,探讨米诺环素治疗脊髓损伤的作用机制。方法成年雌性Sprague-Dawley(SD)大鼠54只,改良Allen’s法造成不完全脊髓损伤,根据实验需要可以分为3组,空白组,只打开脊柱椎板,不损伤;治疗组,大鼠脊髓损伤,并腹腔注射米诺环素;损伤组,大鼠脊髓损伤,腹腔注射等剂量的生理盐水。观察各组大鼠的后肢能力Basso-Beattie-Bresnahan评分,并于不同时段(3d、7d,14d)取大鼠脊髓T8-9段采用逆转录PCR,以及免疫化学组织染色法测定脑源性神经营养因子以及神经营养因子3的表达。结果米诺环素能够明显改善不完全脊髓损伤大鼠的功能,逆转录PCR和脊髓组织冰冻切片免疫组织化学染色DAB都能证实米诺环素治疗组脑源性神经营养因子以及神经营养因子3表达显著增多。结论米诺环素在治疗不完全脊髓损伤大鼠的机制还应与其上调了大鼠体内的脑源性神经营养因子以及神经营养因子3表达有关。  相似文献   

11.
12.
Brain-derived neurotrophic factor (BDNF) is critical for the function and survival of neurons that degenerate in the late stage of Alzheimer's disease (AD). There are two forms of BDNF, the BDNF precursor (proBDNF) and mature BDNF, in human brain. Previous studies have shown that BDNF mRNA and protein, including proBDNF, are dramatically decreased in end-stage AD brain. To determine whether this BDNF decrease is an early or late event during the progression of cognitive decline, we used western blotting to measure the relative amounts of BDNF proteins in the parietal cortex of subjects clinically classified with no cognitive impairment (NCI), mild cognitive impairment (MCI) or mild to moderate AD. We found that the amount of proBDNF decreased 21 and 30% in MCI and AD groups, respectively, as compared with NCI, consistent with our previous results of a 40% decrease in end-stage AD. Mature BDNF was reduced 34 and 62% in MCI and AD groups, respectively. Thus, the decrease in mature BDNF and proBDNF precedes the decline in choline acetyltransferase activity which occurs later in AD. Both proBDNF and mature BDNF levels were positively correlated with cognitive measures such as the Global Cognitive Score and the Mini Mental State Examination score. These results demonstrate that the reduction of both forms of BDNF occurs early in the course of AD and correlates with loss of cognitive function, suggesting that proBDNF and BDNF play a role in synaptic loss and cellular dysfunction underlying cognitive impairment in AD.  相似文献   

13.
The appropriate development and regulation of neuronal morphology are important to establish functional neuronal circuits and enable higher brain function of the central nervous system. R-Ras, a member of the Ras family of small GTPases, plays crucial roles in the regulation of axonal morphology, including outgrowth, branching, and guidance. GTP-bound activated R-Ras reorganizes actin filaments and microtubules through interactions with its downstream effectors, leading to the precise control of axonal morphology. However, little is known about the upstream regulatory mechanisms for R-Ras activation in neurons. In this study, we found that brain-derived neurotrophic factor (BDNF) has a positive effect on endogenous R-Ras activation and promotes R-Ras-mediated axonal growth. RNA interference knockdown and overexpression experiments revealed that RasGRF1, a guanine nucleotide exchange factor (GEF) for R-Ras, is involved in BDNF-induced R-Ras activation and the promotion of axonal growth. Phosphorylation of RasGRF1 by protein kinase A at Ser916/898 is needed for the full activation of its GEF activity and to facilitate Ras signaling. We observed that BDNF treatment markedly increased this phosphorylation. Our results suggest that BDNF is one of the critical extrinsic regulators for R-Ras activation, and that RasGRF1 is an intrinsic key mediator for BDNF-induced R-Ras activation and R-Ras-mediated axonal morphological regulation.  相似文献   

14.
15.
16.
17.
Recognition memory and anxiety were examined in nulliparous (NP: 0 litters) and multiparous (MP: 5-6 litters) middle-aged female rats (12 months old) to assess possible enduring effects of multiparity at least 3 months after the last litter was weaned. MP females performed significantly better than NP females on the non-spatial memory task, object recognition, and the spatial memory task, object placement. Anxiety as measured on the elevated plus maze did not differ between groups. Monoaminergic activity and levels were measured in prefrontal cortex, CA1 hippocampus, CA3 hippocampus, and olfactory bulb (OB). NP and MP females differed in monoamine concentrations in the OB only, with MP females having significantly greater concentrations of dopamine and metabolite DOPAC, norepinephrine and metabolite MHPG, and the serotonin metabolite 5-HIAA, as compared to NP females. These results indicate a long-term change in OB neurochemistry as a result of multiparity. Brain-derived neurotrophic factor (BDNF) was also measured in hippocampus (CA1, CA3, dentate gyrus) and septum. MP females had higher BDNF levels in both CA1 and septum; as these regions are implicated in memory performance, elevated BDNF may underlie the observed memory task differences. Thus, MP females (experiencing multiple bouts of pregnancy, birth, and pup rearing during the first year of life) displayed enhanced memory task performance but equal anxiety responses, as compared to NP females. These results are consistent with previous studies showing long-term changes in behavioral function in MP, as compared to NP, rats and suggest that alterations in monoamines and a neurotrophin, BDNF, may contribute to the observed behavioral changes.  相似文献   

18.
Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.  相似文献   

19.
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that plagues trauma survivors. Evidence shows that brain-derived neurotrophic factor (BDNF) may be involved in the occurrence and development of PTSD. Here we tried to demonstrate whether BDNF gene polymorphisms are correlated with neurocognitive function following PTSD in patients with hepatocellular carcinoma (HCC). This study included 102 patients with HCC complicated with PTSD, 146 HCC patients, and 152 healthy volunteers. Initially, we evaluated the neurocognitive function of the study subjects. Next, we measured BDNF G11757C and rs6265 polymorphisms by polymerase chain reaction-restriction fragment length polymorphism. The correlation of BDNF polymorphisms and BDNF level with HCC complicated with PTSD was evaluated. The results revealed that HCC complicated with PTSD showed decreased serum BDNF level and Mini-mental state examination (MMSE) score. Serum BDNF level of HCC and HCC complicated with PTSD was positively correlated with MMSE score. GA + AA allele and A allele of rs6265 increased the risk of PTSD among patients with HCC. GA and AA genotypes of rs6265 were correlated with the decreased MMSE score of HCC complicated with PTSD. Haplotype GA of rs6265 and G11757C increased the risk of PTSD for HCC, while haplotype CG decreased this risk. Lastly, the logistic regression analysis suggested that low BDNF level was a contributor to HCC complicated with PTSD, while GG genotype of rs6265 served as a protective factor. Collectively, this study defines the GG genotype of BDNF rs6265 polymorphism as a protector to HCC complicated with PTSD. In addition, these results provided a promising target for PTSD prevention in patients with HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号