首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1995,131(5):1275-1290
Separate populations of microtubules (MTs) distinguishable by their level of posttranslationally modified tubulin subunits and by their stability in vivo have been described. In polarized 3T3 cells at the edge of an in vitro wound, we have found a striking preferential coalignment of vimentin intermediate filaments (IFs) with detyrosinated MTs (Glu MTs) rather than with the bulk of the MTs, which were tyrosinated MTs (Tyr MTs). Vimentin IFs were not stabilizing the Glu MTs since collapse of the IF network to a perinuclear location, induced by microinjection of monoclonal anti-IF antibody, had no noticeable effect on the array of Glu MTs. To test whether Glu MTs may affect the organization of IFs we regrew MTs in cells that had been treated with nocodazole to depolymerize all the MTs and to collapse IFs; the reextension of IFs into the lamella lagged behind the rapid regrowth of Tyr MTs, but was correlated with the slower reformation of Glu MTs. Similar realignment of IFs with newly formed Glu MTs was observed in serum-starved cells treated with either serum or taxol to induce the formation of Glu MTs. Next, we microinjected affinity purified antibodies specific for Glu tubulin (polyclonal SG and monoclonal 4B8) and specific for Tyr tubulin (polyclonal W2 and monoclonal YL1/2) into 3T3 cells. Both injected SG and 4B8 antibodies labeled the subset of endogenous Glu MTs; W2 and YL1/2 antibodies labeled virtually all of the cytoplasmic MTs. Injection of SG or 4B8 resulted in the collapse of IFs to a perinuclear region. This collapse was comparable to that observed after complete MT depolymerization by nocodazole. Injection of W2, YL1/2, or nonspecific control IgGs did not result in collapse of the IFs. Taken together, these results show that Glu MTs localize IFs in migrating 3T3 fibroblasts and suggest that detyrosination of tubulin acts as a signal for the recruitment of vimentin IFs to MTs.  相似文献   

2.
Microtubules (MTs) have been implicated to function in the change of cell shape and intracellular organization that occurs during myogenesis. However, the mechanism by which MTs are involved in these morphogenetic events is unclear. As a first step in elucidating the role of MTs in myogenesis, we have examined the accumulation and subcellular distribution of posttranslationally modified forms of tubulin in differentiating rat L6 muscle cells, using antibodies specific for tyrosinated (Tyr), detyrosinated (Glu), and acetylated (Ac) tubulin. Both Glu and Ac tubulin are components of stable MTs, whereas Tyr tubulin is the predominant constituent of dynamic MTs. In proliferating L6 myoblasts, as in other types of proliferating cells, the level of Glu tubulin was very low when compared with the level of Tyr tubulin. However, when we shifted proliferating L6 cells to differentiation media, we observed a rapid accumulation of Glu tubulin in cellular MTs. By immunofluorescence, the increase in Glu tubulin was first detected in MTs of prefusion myoblasts and was specifically localized to MTs that were associated with elongating portions of the cell. MTs in the multinucleated myotubes observed at later stages of differentiation maintained the elevated level of Glu tubulin that was observed in the prefusion myoblasts. When cells at early stages of differentiation (less than 1 d after switching the culture medium) were immunostained for Glu tubulin and the muscle-specific marker, muscle myosin, we found that the increase in Glu tubulin preceded the accumulation of muscle myosin. Thus, the elaboration of Glu MTs is one of the very early events in myogenesis. Ac tubulin also increased during L6 myogenesis; however, the increase in acetylation occurred later in myogenesis, after fusion had already occurred. Because detyrosination was temporally correlated with early events of myogenesis, we examined the mechanism responsible for the accumulation of Glu tubulin in the MTs of prefusion myoblasts. We found that an increase in the stability of L6 cell MTs occurred at the onset of differentiation, suggesting that the early increase in detyrosination that we observed is a manifestation of a decrease in MT dynamics in elongating myoblasts. We conclude that the establishment of an oriented array of microtubules heightened in its stability and its level of posttranslationally modified subunits may be involved in the subcellular remodeling that occurs during myogenesis.  相似文献   

3.
Posttranslationally modified forms of tubulin accumulate in the subset of stabilized microtubules (MTs) in cells but are not themselves involved in generating MT stability. We showed previously that stabilized, detyrosinated (Glu) MTs function to localize vimentin intermediate filaments (IFs) in fibroblasts. To determine whether tubulin detyrosination or MT stability is the critical element in the preferential association of IFs with Glu MTs, we microinjected nonpolymerizable Glu tubulin into cells. If detyrosination is critical, then soluble Glu tubulin should be a competitive inhibitor of the IF-MT interaction. Before microinjection, Glu tubulin was rendered nonpolymerizable and nontyrosinatable by treatment with iodoacetamide (IAA). Microinjected IAA-Glu tubulin disrupted the interaction of IFs with MTs, as assayed by the collapse of IFs to a perinuclear location, and had no detectable effect on the array of Glu or tyrosinated MTs in cells. Conversely, neither IAA-tyrosinated tubulin nor untreated Glu tubulin, which assembled into MTs, caused collapse of IFs when microinjected. The epitope on Glu tubulin responsible for interfering with the Glu MT-IF interaction was mapped by microinjecting tubulin fragments of alpha-tubulin. The 14-kDa C-terminal fragment of Glu tubulin (alpha-C Glu) induced IF collapse, whereas the 36-kDa N-terminal fragment of alpha-tubulin did not alter the IF array. The epitope required more than the detyrosination site at the C terminus, because a short peptide (a 7-mer) mimicking the C terminus of Glu tubulin did not disrupt the IF distribution. We previously showed that kinesin may mediate the interaction of Glu MTs and IFs. In this study we found that kinesin binding to MTs in vitro was inhibited by the same reagents (i.e., IAA-Glu tubulin and alpha-C Glu) that disrupted the IF-Glu MT interaction in vivo. These results demonstrate for the first time that tubulin detyrosination functions as a signal for the recruitment of IFs to MTs via a mechanism that is likely to involve kinesin.  相似文献   

4.
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulins are post-translationally modified species that differ by a single amino acid at their respective C-termini. We have examined the distribution of these two species by immunofluorescence in proliferating and differentiated cells using antisera specifically reactive with each of the forms. In proliferating PtK1 cells, Tyr tubulin was the predominant form in almost every cytoplasmic microtubule (MT); only a few MTs contained detectable Glu tubulin. In contrast, staining of centrioles and primary cilia of PtK1 cells suggested that Glu tubulin was the predominant form in these stable assemblies of MTs. An examination of the distribution (by immunofluorescence) and relative amount (by immunoblot analysis) of the two forms of tubulin in the stable assemblies of MTs present in cultured neuronal cells (neurites), sperm and tracheal cells (axonemes and basal bodies), and platelets and erythrocytes (marginal bands) revealed that, in general, the MTs in these arrays contained substantially elevated levels of Glu tubulin in comparison with the levels in MTs of cultured cells. The one exception, the marginal band of toad erythrocytes, which contained only Tyr tubulin, demonstrates that an elevated level of Glu tubulin is not an obligate feature of a stable array of MTs. Nonetheless, an elevated level of Glu tubulin may be a useful indicator of stable MTs in differentiated cells. It is important to note that commonly used sources of tubulin (e.g., brain or flagella) necessarily yield tubulin that differs strikingly from tubulin of proliferating cells in its content of Glu tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The asymmetric distribution of stable, posttranslationally modified microtubules (MTs) contributes to the polarization of many cell types, yet the factors controlling the formation of these MTs are not known. We have found that lysophosphatidic acid (LPA) is a major serum factor responsible for rapidly generating stable, detyrosinated (Glu) MTs in serum-starved 3T3 cells. Using C3 toxin and val14 rho we showed that rho was both necessary and sufficient for the induction of Glu MTs by LPA and serum. Unlike previously described factors that induce MT stability, rho induced the stabilization of only a subset of the MTs and, in wound-edge cells, these stable MTs were appropriately oriented toward the leading edge of the cell. LPA had little effect on individual parameters of MT dynamics, but did induce long states of pause in a subset of MTs near the edge of the cell. Rho stimulation of MT stability was independent of actin stress fiber formation. These results identify rho as a novel regulator of the MT cytoskeleton that selectively stabilizes MTs during cell polarization by acting as a switch between dynamic and stable states of MTs rather than as a modulator of MT assembly and disassembly.  相似文献   

6.
Immunofluorescence with specific peptide antibodies has previously established that tyrosinated (Tyr) and detyrosinated (Glu) tubulin, the two species generated by posttranslational modification of the COOH-terminus of alpha-tubulin, are present in distinct, but overlapping, subsets of microtubules in cultured cells (Gundersen, G. G., M. H. Kalnoski, and J. C. Bulinski, 1984, Cell, 38:779-789). Similar results were observed by light microscopic immunogold staining in the two cell types used in this study, CV1 and PtK2 cells: most microtubules were stained with the Tyr antibody, whereas only a few were stained with the Glu antibody. We have examined immunogold-stained preparations by electron microscopy to extend these results. In general, electron microscopic localization confirmed results obtained at the light microscopic level: the majority of the microtubules in CV1 and PtK2 cells were nearly continuously labeled with the Tyr antibody, whereas only a few were heavily labeled with the Glu antibody. However, in contrast to the light microscopic staining, we found that all microtubules of interphase and mitotic CV1 and PtK2 cells contained detectable Tyr and Glu immunoreactivity at the electron microscopic level. No specific localization of either species was observed in microtubules near particular organelles (e.g., mitochondria or intermediate filaments). Quantification of the relative levels of Glu and Tyr immunoreactivity in individual interphase and metaphase microtubules showed that all classes of spindle microtubules (i.e., kinetochore, polar, and astral) contained nearly the same level of Glu immunoreactivity; this level of Glu immunoreactivity was lower than that found in all interphase microtubules. Most interphase microtubules had low levels of Glu immunoreactivity, whereas a few had relatively high levels; the latter corresponded to morphologically sinuous microtubules. Quantification of the relative levels of Tyr and Glu immunoreactivity in segments along individual microtubules suggested that the level of Tyr (or Glu) tubulin in a given microtubule was uniform along its length. Understanding how microtubules with different levels of Tyr and Glu tubulin arise will be important for understanding the role of tyrosination/detyrosination in microtubule function. Additionally, the coexistence of microtubules with different levels of the two species may have important implications for microtubule dynamics in vivo.  相似文献   

7.
Tyrosinated (Tyr) and detyrosinated (Glu) alpha-tubulin, species interconverted by posttranslational modification, are largely segregated in separate populations of microtubules in interphase cultured cells. We sought to understand how distinct Tyr and Glu microtubules are generated in vivo, by examining time-dependent alterations in Tyr and Glu tubulin levels (by immunoblots probed with antibodies specific for each species) and distributions (by immunofluorescence) after microtubule regrowth and stabilization. When microtubules were allowed to regrow after complete depolymerization by microtubule antagonists, Glu microtubules reappeared with a delay of approximately 25 min after the complete array of Tyr microtubules had regrown. In these experiments, Tyr tubulin immunofluorescence first appeared as an aster of distinct microtubules, while Glu tubulin staining first appeared as a grainy pattern that was not altered by detergent extraction, suggesting that Glu microtubules were created by detyrosination of Tyr microtubules. Treatments with taxol, azide, or vinblastine, to stabilize polymeric tubulin, all resulted in time-dependent increases in polymeric Glu tubulin levels, further supporting the hypothesis of postpolymerization detyrosination. Analysis of monomer and polymer fractions during microtubule regrowth and in microtubule stabilization experiments were also consistent with postpolymerization detyrosination; in each case, Glu polymer levels increased in the absence of detectable Glu monomer. The low level of Glu monomer in untreated or nocodazole-treated cells (we estimate that Glu tubulin comprises less than 2% of the monomer pool) also suggested that Glu tubulin entering the monomer pool is efficiently retyrosinated. Taken together these results demonstrate that microtubules are polymerized from Tyr tubulin and are then rapidly converted to Glu microtubules. When Glu microtubules depolymerize, the resulting Glu monomer is retyrosinated. This cycle generates structurally, and perhaps functionally, distinct microtubules.  相似文献   

8.
In interphase cells, the adenomatous polyposis coli (APC) protein accumulates on a small subset of microtubules (MTs) in cell protrusions, suggesting that APC may regulate the dynamics of these MTs. We comicroinjected a nonperturbing fluorescently labeled monoclonal antibody and labeled tubulin to simultaneously visualize dynamics of endogenous APC and MTs in living cells. MTs decorated with APC spent more time growing and had a decreased catastrophe frequency compared with non-APC-decorated MTs. Endogenous APC associated briefly with shortening MTs. To determine the relationship between APC and its binding partner EB1, we monitored EB1-green fluorescent protein and endogenous APC concomitantly in living cells. Only a small fraction of EB1 colocalized with APC at any one time. APC-deficient cells and EB1 small interfering RNA showed that EB1 and APC localized at MT ends independently. Depletion of EB1 did not change the growth-stabilizing effects of APC on MT plus ends. In addition, APC remained bound to MTs stabilized with low nocodazole, whereas EB1 did not. Thus, we demonstrate that the association of endogenous APC with MT ends correlates directly with their increased growth stability, that this can occur independently of its association with EB1, and that APC and EB1 can associate with MT plus ends by distinct mechanisms.  相似文献   

9.
The relationship between alpha tubulin detyrosination and microtubule (MT) stability was examined directly in cultured fibroblasts by experimentally converting the predominantly tyrosinated MT array to a detyrosinated (Glu) array and then assaying MT stability. MTs in mouse Swiss 3T3 cells displayed an increase in Glu immunostaining fluorescence approximately 1 h after microinjecting antibodies to the tyrosinating enzyme, tubulin tyrosine ligase. Detyrosination progressed to virtual completion after 12 h and persisted for 30-35 h before tyrosinated subunits within MTs were again detected. The stability of these experimentally detyrosinated MTs was tested by first injecting either biotinylated or Xrhodamine-labeled tubulin and then measuring bulk turnover by hapten-mediated immunocytochemistry or fluorescence recovery after photobleaching, respectively. By both methods, turnover was found to be similarly rapid, possessing a half time of approximately 3 min. As a final test of MT stability, the level of acetylated tubulin staining in antibody-injected cells was compared with that observed in adjacent, uninjected cells and also with the staining observed in cells whose MTs had been stabilized with taxol. Although intense Glu staining was observed in both injected and taxol-treated cells, increased acetylated tubulin staining was observed only in the taxol-stabilized MTs, indicating that the MTs were not stabilized by detyrosination. Together, these results demonstrated clearly that detyrosination does not directly confer stability on MTs. Therefore, the stable MTs observed in these and other cell lines must have arisen by another mechanism, and may have become posttranslationally modified after their stabilization.  相似文献   

10.
Microtubule (MT) destabilization promotes the formation of actin stress fibers and enhances the contractility of cells; however, the mechanism involved in the coordinated regulation of MTs and the actin cytoskeleton is poorly understood. LIM kinase 1 (LIMK1) regulates actin polymerization by phosphorylating the actin depolymerization factor, cofilin. Here we report that LIMK1 is also involved in the MT destabilization. In endothelial cells endogenous LIMK1 co-localizes with MTs and forms a complex with tubulin via the PDZ domain. MT destabilization induced by thrombin or nocodazole resulted in a decrease of LIMK1 colocalization with MTs. Overexpression of wild type LIMK1 resulted in MT destabilization, whereas the kinase-dead mutant of LIMK1 (KD) did not affect MT stability. Importantly, down-regulation of endogenous LIMK1 by small interference RNA resulted in abrogation of the thrombin-induced MTs destabilization and the inhibition of thrombin-induced actin polymerization. Expression of Rho kinase 2, which phosphorylates and activates LIMK1, dramatically decreases the interaction of LIMK1 with tubulin but increases its interaction with actin. Interestingly, expression of KD-LIMK1 or small interference RNA-LIMK1 prevents thrombin-induced microtubule destabilization and F-actin formation, suggesting that LIMK1 activity is required for thrombin-induced modulation of microtubule destabilization and actin polymerization. Our findings indicate that LIMK1 may coordinate microtubules and actin cytoskeleton.  相似文献   

11.
Serum- and glucocorticoid-inducible kinase 1 (SGK1) is a member of the Ser/Thr protein kinase family that regulates a variety of cell functions. Recently, SGK1 was shown to increase dendritic growth but the mechanism underlying the increase is unknown. Here we demonstrated that SGK1 increased the neurite formation of cultured hippocampal neurons through microtubule (MT) depolymerization via two distinct mechanisms. First, SGK1 directly depolymerized MTs. In vitro MT depolymerization experiments revealed that SGK1, especially N-truncated SGK1, directly disassembled self-polymerized MTs and taxol-stabilized MTs in a dose-dependent and ATP-independent manner. The transfection of sgk1 to HeLa cells also inhibited MT assembly in vivo. Second, SGK1 indirectly depolymerized MTs through the phosphorylation of tau at Ser214. An in vitro kinase assay revealed that active SGK1 phosphorylated tau Ser214 specifically. In vivo transfection of sgk1 also phosphorylated tau Ser214 in HEK293T cells and hippocampal neurons. Further, sgk1 transfection significantly increased the number of primary neurites and shortened the length of the total process in cultured hippocampal neurons. These effects were antagonized by the cotransfection of the tauS214A mutant plasmid. Dexamethasone, a synthetic glucocorticoid, mimics the effect of sgk1 overexpression. Together, these results suggest that SGK1 enhances neurite formation through MT depolymerization by a direct action of SGK1 and by the SGK1 phosphorylation of tau.  相似文献   

12.
Influence of ultraviolet-B (UV-B) as an abiotic stress factor on plant microtubules (MTs) and involvement of nitric oxide (NO) as a secondary messenger mediating plant cell response to environmental stimuli were investigated in this study. Taking into account that endogenous NO content in plant cells has been shown to be increased under a broad range of abiotic stress factors, the effects of UV-B irradiation and also the combined action of UV-B and NO donor sodium nitroprusside (SNP) or NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) on the MTs organization in different root cells of Arabidopsis thaliana were tested. Subsequently, realization of the MT-mediated processes such as root growth and development was studied under these conditions. Arabidopsis thaliana seedlings expressing the chimeric gene gfp-map4 were exposed to the enhanced UV-B with or without SNP or c-PTIO pretreatment. The UV-B irradiation alone led to a dose-dependent root growth inhibition and to morphological alterations of the primary root manifested in their swelling and excessive root hair formation. Moreover, dose-dependent randomization and depolymerization of MTs in both epidermal and cortical cells under the enhanced UV-B were found. However, SNP pretreatment of the UV-B irradiated A. thaliana seedlings recovered the UV-B inhibited root growth as compared to c-PTIO pretreatment. It has been shown that in 24 h after UV-B irradiation the organization of MTs in root epidermal cells of SNP-pretreated A. thaliana seedlings was partially recovered, whereas in c-PTIO-pretreated ones the organization of MTs has not been distinctly improved. Therefore, we suppose that the enhanced NO levels in plant cells can protect MTs organization as well as MT-related processes of root growth and development against disrupting effects of UV-B.  相似文献   

13.
Microtubule (MT) response to different steady state temperatures and to rapid shifts in temperature was studied quantitatively in large, thin cells (LT-cells) from the goldfish scale. MT number and total tubulin concentration per cell were found to be fairly constant in cells from the same fish, regardless of cell size but between fish, could differ by a factor of two. The total tubulin concentration was similar to that found in mammalian tissue culture cells and the proportion in MT form increased with increasing steady state temperature. Total MT length quickly and exponentially decreased when cells were rapidly chilled to approximately -3 degrees C. In contrast, the average length of the MTs bound to the MT organizing center (MTOC) did not significantly change. Free MTs were generated during chilling and had an average length roughly half that of bound MTs. These observations suggest that 1) there is a functional block to rapid depolymerization at the unattached end of the MTOC bound MTs and 2) depolymerization of the MT occurs from the originally bound end only after its release from the MTOC. The presence of free MTs in a wide variety of cells suggests that these two features may be characteristic of steady state MTs in other cells. When the temperature of the LT-cells was abruptly raised, the number of MTs initiated on the MTOC rapidly increased and reached a brief steady state long before the MTs completely elongated. Many MTs then apparently detached from the MTOC and depolymerized before a final steady state was reached. When cells containing newly polymerized MTs were chilled to approximately -3 degrees C, the MTs detached from the MTOC more rapidly than those starting from steady state. Furthermore, the block to depolymerization at the unattached end was not complete. These observations suggest that newly formed, non-steady state MTs are different from the older, steady state MTs.  相似文献   

14.
BACKGROUND: In migrating cells, the retrograde flow of filamentous actin (f-actin) from the leading edge toward the cell body is accompanied by the synchronous motion of microtubules (MTs, ), whose plus ends undergo net growth. Thus, MTs must depolymerize elsewhere in the cell to maintain polymer mass over time. The source and location of depolymerized MTs is unknown. Here, we test the hypothesis that MT polymer loss occurs in central cell regions and is induced by the convergence of actin retrograde and anterograde flow, which buckles and breaks associated MTs and promotes minus-end depolymerization. RESULTS: We characterized the effects of calyculin A and ML-7 on the movement of f-actin and MTs by multi-spectral fluorescence recovery after photobleaching (FRAP) and fluorescent speckle microscopy (FSM). Our studies show that these drugs affect the rate of f-actin and MT convergence and MT buckling in a central cell region we call the "convergence zone." Increases in f-actin convergence are associated with faster MT turnover and an increase in both MT breakage and minus-end depolymerization, but they have no effect on MT plus end dynamic instability. CONCLUSIONS: We propose that f-actin movement into the convergence zone plays a major role in spatially modulating MT turnover during cell migration by regulating MT breakage, and thus minus-end dynamics, in central cell regions.  相似文献   

15.
The cytoskeleton of neurites after microtubule depolymerization   总被引:14,自引:0,他引:14  
We previously reported a positive correlation between the number of cold-stable microtubules (MTs) remaining after cold treatment of cat sympathetic nerve and the extent to which the original uniform polarity orientation of axonal MTs was recapitulated after rewarming (J cell biol 99 (1984) 1289). We interpreted these data to indicate that cold-stable fragments, part of larger, generally labile MTs, could act as seeds to organize MT assembly in axons. We report here a direct investigation of the form of cold-stable MTs in neurites of PC-12 cells using two-dimensional reconstruction of serial thin sections. Our data provides strong support for our previous interpretation. The number of MTs in cold-treated neurites was 2-3 times as great while the total length of polymer was approximately half that in control neurites. The average length of MTs in cold-treated neurites was 7-10 times lower than in control neurites. We observed that treatments that depolymerize axonal microtubules cause a marked increase in the number of membranous elements within the axoplasm. This may, however, be a non-specific result of an insult to the axon, since such changes have also been observed in severed, regenerating nerve fibres. We observed that neuroblastoma neurites respond to MT-depolymerization stimuli by developing lateral filopodia similar to those observed in chick dorsal root ganglion cells. Ultrastructural observation of detergent-lysed, whole mounted neuroblastoma (Neuro 2A) cells indicated that the cytoskeleton remaining after MT depolymerization splayed out perpendicular to the long axis of the neurite. That is, we were able to observe many more cytoskeletal 'ends' after MT depolymerization. The concomitant production of filopodia and the splaying of the cytoskeleton after MT depolymerization supports the hypothesis put forward by Wessels et al. (Exp cell res 117 (1978) 335) that the presence or absence of cytoskeletal ends regulates which region of the cell surface is involved in motile behaviour.  相似文献   

16.
SJL mice are high responders to the polyproline region of poly(Tyr,Glu) -polyPro-polyLys, (T,G)-Pro-L and of poly (Phe,Glu) -polyPro-polyLys, (Phe,G)-Pro-L, whereas DBA/1 mice are the low responders to this moiety. The low responsiveness of DBA/1 mice to polyproline could be enhanced by immunization with (T,G)-Pro-L 4 days after stimulation of peritoneal cells by thioglycolate. The same effect was observed when DBA/1 mice were immunized with 107 syngeneic peritoneal exudate cells (PEC) preincubated in vitro with the immunogen. Similar treatments of SJL mice did not enhance the high response to polyproline, nor did it enhance low responses to other synthetic polypeptides tested.The enhancing effect of PEC on immunocompetent cells was established by transferring graded numbers of spleen cells together with 107 PEC into irradiated syngeneic DBA/1 recipients. The effective cell type in the PEC was found to be the macrophage as the same results were observed with the adherent-cell population. Furthermore, the effect was not abolished after in vitro irradiation of PEC with 5000 R or by anti-θ treatment. In vivo irradiation of the PEC donors 2 days before the cells were harvested also did not influence the phenotypic correction of the low responsiveness.Transfer experiments in which graded inocula of either marrow cells or thymocytes from DBA/1 donors were transferred into syngeneic recipients in the presence of an excess of the complementary cell type together with PEC indicated that the enhancing effect was reflected in the bone-marrow-cell population only.  相似文献   

17.
18.
A significant fraction of internalized transferrin (Tf) concentrates in the endocytic recycling compartment (ERC), which is near the microtubule-organizing center in many cell types. Tf then recycles back to the cell surface. The mechanisms controlling the localization, morphology, and function of the ERC are not fully understood. We examined the relationship of Tf trafficking with microtubules (MTs), specifically the subset of stable, detyrosinated Glu MTs. We found some correlation between the level of stable Glu MTs and the distribution of the ERC; in cells with low levels of Glu MTs concentrated near to the centriole, the ERC was often tightly clustered, whereas in cells with higher levels of Glu MTs throughout the cell, the ERC was more dispersed. The clustered ERC in Chinese hamster ovary cells became dispersed when the level of Glu MTs was increased with taxol treatment. Furthermore, in a temperature-sensitive Chinese hamster ovary cell line (B104-5), the cells had more Glu MTs when the ERC became dispersed at elevated temperature. Microinjecting purified anti-Glu tubulin antibody into B104-5 cells at elevated temperature induced the redistribution of the ERC to a tight cluster. Microinjection of anti-Glu tubulin antibody slowed recycling of Tf to the cell surface without affecting Tf internalization or delivery to the ERC. Similar inhibition of Tf recycling was caused by microinjecting anti-kinesin antibody. These results suggest that stable Glu MTs and kinesin play a role in the organization of the ERC and in facilitating movement of vesicles from the ERC to the cell surface.  相似文献   

19.
Oncoprotein 18 (Op18, also termed p19, p18, prosolin or stathmin) is a cytosolic protein of previously unknown function. Phosphorylation of Op18 is cell cycle regulated by cyclin-dependent kinases (CDKs), and expression of a 'CDK target site-deficient mutant' results in a phenotype indicative of a role for Op18 during mitosis. This phenotype is compatible with the idea that Op18 is a phosphorylation-responsive regulator of microtubule (MT) dynamics. Therefore, in this study, we analyzed MTs in cells induced to express either wild-type or mutated Op18. The results showed that wild-type Op18 and a CDK target site mutant both efficiently elicited rapid depolymerization of MTs. This result contrasts with clear-cut differences in their cell cycle phenotypes. Morphological analysis of MTs explained this apparent discrepancy: while interphase MTs were depolymerized in cells expressing either Op18 derivative, apparently normal mitotic spindles were formed only in cells overexpressing wild-type Op18. This result correlates with our finding that only mutated Op18 causes a block during mitosis. Hence, we conclude that Op18 decreases MT stability and that this activity of Op18 is subject to cell cycle regulation by CDKs.  相似文献   

20.
J. Marc  Y. Mineyuki  B. A. Palevitz 《Planta》1989,179(4):530-540
The generation of the unique radial array of microtubules (MTs) in stomatal guard cells raises questions about the location and activities of relevant MT-organizing centers. By using tubulin immunofluorescence microscopy, we studied the pattern of depolymerization and reassembly of MTs in guard cells of Allium cepa L. Chilling at 0°C reduces the MTs to small remnants that surround the nuclear surface of cells in the early postcytokinetic stage, or form a dense layer along the central portion of the ventral wall in older guard cells. A rapid reassembly on rewarming restores either MTs extending from the nuclear surface randomly throughout the cytoplasm in very young cells, or an array of MTs radiating from the dense layer at the ventral wall later in development. A similar pattern of depolymerization and reassembly is achieved by incubation with 100 M colchicine followed by a brief irradiation with ultraviolet (UV) light. Incubation with 200 M colchicine leads to a complete depolymerization that leaves only a uniform, diffuse cytoplasmic fluorescence. Nonetheless, UV irradiation of developing guard cells induces the regeneration of a dense layer of MTs at the ventral wall. The layer is again positioned centrally along the wall, even if the nucleus has been displaced by centrifugation in the presence of cytochalasin D. Neither the regenerated layer nor the perinuclear MTs seen earlier are related to the staining pattern of serum 5051, which reportedly binds to centrosomal material in animal and plant cells. The results support the view that, soon after cytokinesis, a planar MT-organizing zone is established in the cortex along the central portion of the ventral wall, which then generates the radial MT array.Abbreviations GC guard cell - MT microtubule - MTOC microtubule-organizing center - UV ultraviolet To whom correspondence should be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号