首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
Since increased intracellular Ca2+ is believed to be the main factor causing skeletal muscle contracture in human and porcine malignant hyperthermia, the potential effects of the ionophore A23187, which enhances intracytoplasmic Ca2+, were investigated in Pietrain pig muscles. These effects were compared with those of caffeine, known to induce dose-dependent contracture in vitro in isolated muscle from human subjects with malignant hyperthermia. For this purpose, the mechanical and biochemical actions of caffeine and A23187 were tested in intercostal muscle biopsies from 10 normal pigs and 10 with malignant hyperthermia. The results show that A23187 allowed very clear differentiation between the muscles of normal and pathological animals. In view of the wide spectrum of drug sensitivity characterizing subjects with malignant hyperthermia, it is suggested that exposure to A23187 be added to the halothane and caffeine tests currently used to detect this disease.  相似文献   

2.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

3.
1. The denervated frog sartorius muscle showed a decrease in the energy store more than that in the control. 2. In the caffeine contractures, both the denervated and the innervated muscles showed similar sequential changes in the relative concentration of phosphocreatine (PCr) to beta-adenosine triphosphate (beta-ATP) and inorganic phosphate (Pi) to beta-ATP. Instead, the intracellular pH value of the denervated muscle was lower than that of the control. 3. It is suggested that phosphate metabolism of the denervated muscle during contracture shows little difference from that of the control, nevertheless, the buffering capacity is decreased in the early stage of atrophy.  相似文献   

4.
Malignant hyperthermia (MH) results from a defect of calcium release control in skeletal muscle that is often caused by point mutations in the ryanodine receptor gene (RYR1). In malignant hyperthermia-susceptible (MHS) muscle, calcium release responds more sensitively to drugs such as halothane and caffeine. In addition, experiments on the porcine homolog of malignant hyperthermia (mutation Arg615Cys in RYR1) indicated a higher sensitivity to membrane depolarization. Here, we investigated depolarization-dependent calcium release under voltage clamp conditions in human MHS muscle. Segments of muscle fibers dissected from biopsies of the vastus lateralis muscle of MHN (malignant hyperthermia negative) and MHS subjects were voltage-clamped in a double vaseline gap system. Free calcium was determined with the fluorescent indicator fura-2 and converted to an estimate of the rate of SR calcium release. Both MHN and MHS fibers showed an initial peak of the release rate, a subsequent decline, and rapid turn-off after repolarization. Neither the kinetics nor the voltage dependence of calcium release showed significant deviations from controls, but the average maximal peak rate of release was about threefold larger in MHS fibers.  相似文献   

5.
In this article, we describe a possible mechanism of ouabain potentiation in heart based on the following findings in cardiac and skeletal muscles of various species. (1) In heart ventricle muscles of frog and guinea pig, the ouabain potentiation is produced without an effect on Ca influx. In both frog and cat heart ventricle muscles, ouabain potentiates the rapid cooling contracture with or without caffeine in a Ca-deprived medium. It follows, therefore, that the ouabain potentiation is produced by an "intracellular" mechanism. (2) In crab single muscle fibers, contractile responses such as twitch, potassium-induced contracture, caffeine-induced contracture, and water-induced contracture are remarkably potentiated if ouabain is present within the fibers by microinjection, whereas the situation is reversed if the drug is given extracellularly. (3) The ouabain potentiated the Ca release from fragmented sarcoplasmic reticulum (FSR) isolated from cat, guinea pig, and frog heart and from skeletal muscles as a result of the procedures used, such as changing the ionic environment. (4) In frog, cat, and guinea pig heart ventricle muscles, a reduction of contractility as a result of pretreatment with urea--Ringer's was completely cancelled by ouabain almost without influencing the membrane depolarization. Based on these findings and others, the deduction was made that the positive inotropic effect of cardiac glycosides on the heart is brought about by potentiation of contraction - Ca release from the intracellular store sites, namely the sarcoplasmic reticulum.  相似文献   

6.
Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia   总被引:17,自引:0,他引:17  
Previous studies have demonstrated that skeletal muscle from individuals susceptible to malignant hyperthermia (MH) has a defect associated with the mechanism of calcium release from its intracellular storage sites in the sarcoplasmic reticulum (SR). In this report we demonstrate that the [3H]ryanodine receptor of isolated MH-susceptible (MHS) porcine heavy SR exhibits an altered Ca2+ dependence of [3H]ryanodine binding at the low affinity Ca2+ site as well as a lower Kd for ryanodine (92 versus 265 nM) when compared to normal porcine SR. The Bmax of the normal and MHS [3H] ryanodine receptor (9.3-12.6 pmol/mg) was not significantly different, and analysis of MHS and normal SR proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis did not reveal a significant difference in the intensity of Coomassie Blue staining of the spanning protein/ryanodine receptor region of the gels (Mr greater than 300,000). We also find that MHS porcine muscle intact fiber bundles exhibit a 5-10-fold lower ryanodine threshold for twitch and tetanus inhibition, and contracture onset when compared to normal muscle. Since the SR ryanodine receptor is a calcium release channel as well as a component intimately involved in transverse tubule-SR communication, abnormalities in the skeletal muscle ryanodine receptor may be responsible for the abnormal SR calcium release and contractile properties demonstrated by MHS muscle.  相似文献   

7.
R Gruener  L Z Stern  N Baumbach 《Life sciences》1975,17(10):1557-1565
Surgically denervated muscle exhibits increased sensitivity to acetylcholine and caffeine, and the acetylcholine contracture subsequent to preincubation with caffeine is greatly enhanced. The potentiation of the acetylcholine contracture derives, at least in part, from the direct action of caffeine on the muscle membrane resulting in an augmented and prolonged depolarization. The extent of potentiation depends on the duration of exposure to caffeine, is inhibited by increased extracellular calcium and is not present when cyclic AMP is substituted for caffeine.Biopsied human intercostal muscle shows high acetylcholine sensitivity in myotonic muscular dystrophy and motor neuron disease when compared to normal human or Duchenne dystrophic muscle. We suggest that myotonic dystrophy and motor neuron disease resemble surgical denervation more than Duchenne dystrophy does, and that in the former two diseases, as in denervated muscle, the acetylcholine sensitivity is increased with a concomitant abnormality in calcium-receptor interaction.  相似文献   

8.
The purpose of this study was to determine the interaction of three factors that modify twitch contraction amplitude in the rat gastrocnemius muscle in situ: posttetanic potentiation, fatigue, and caffeine. Posttetanic (200 Hz for 1 s) twitch responses were observed before and after 15 Hz stimulation for 6 min (group FS), injection of caffeine (75 mg/kg dissolved in saline, group NC), a combination of both repetitive stimulation and caffeine injection (group FC), or no treatment (group NS). Developed tension increased significantly with posttetanic potentiation and caffeine injection and these potentiating factors were additive (group NC). Repetitive stimulation attenuated the twitch response and the fatigued muscle was still responsive to the potentiating factors. Posttetanic potentiation was accomplished primarily by a significant increase in the peak rate of force development whereas caffeine potentiation and fatigue were effected with a proportional change in contraction time. It seems likely that the mechanism of posttetanic potentiation is not the same as the mechanism of caffeine-induced potentiation. Caffeine-induced potentiation is known to be related to increased release of calcium. Because changes in contraction time with fatigue were opposite to those associated with caffeine potentiation, it is proposed that the attenuated twitch response in fatigue results from reduced release of calcium.  相似文献   

9.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

10.
Strips of soleus (100% type I) and gracilis (90% type II) muscle were obtained from anesthetized cats and mounted in organ baths filled with aerated Krebs-Ringer solution (37 degrees C). The contractile patterns in response to electrical stimulation (0.1 Hz, 25 V, 5 ms), caffeine, halothane, and caffeine in the presence of halothane were examined in the two fiber types. The ability of 25 microM dantrolene to alter the contractile patterns was also evaluated. In vitro contractile properties in response to electrical stimulation were similar to properties observed in situ, except that twitch tension in soleus muscle was significantly less in vitro than in situ. In the presence of halothane, type I soleus muscle developed a rapid contracture. The contracture was blocked by pretreatment with dantrolene and was reversed by addition of dantrolene at the peak of the response. Halothane-induced contractures were not observed at any time in type II gracilis. Type I soleus was also significantly more sensitive both to caffeine alone and to caffeine in the presence of halothane than was type II gracilis. In both fiber types, halothane increased the sensitivity of the muscles to caffeine. Dantrolene attenuated caffeine-induced contractures in both fiber types, but the attenuating effect was less in the presence of halothane. The findings of a halothane-induced contracture in the cat soleus and differential sensitivities of the two muscle fiber types to caffeine indicate that further studies in these two muscles may be useful for delineating the mechanisms inducing contracture in muscle from individuals susceptible to malignant hyperthermia.  相似文献   

11.

Background

Malignant hyperthermia (MH) is triggered by halogenated anaesthetics and depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle. An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs and in transfected cell lines. We hypothesized that inhibition of Ca2+ reuptake via the sarcoplasmic Ca2+-ATPase (SERCA) enhances halothane- and caffeine-induced muscle contractures in MH susceptible more than in non-susceptible skeletal muscle.

Methods

With informed consent, surplus muscle bundles of 7 MHS (susceptible), 7 MHE (equivocal) and 16 MHN (non-susceptible) classified patients were mounted to an isometric force transducer, electrically stimulated, preloaded and equilibrated. Following 15 min incubation with cyclopiazonic acid (CPA) 25 μM, the European MH standard in-vitro-contracture test protocol with caffeine (0.5; 1; 1.5; 2; 3; 4 mM) and halothane (0.11; 0.22; 0.44; 0.66 mM) was performed. Data as median and quartiles; Friedman- and Wilcoxon-test for differences with and without CPA; p < 0.05.

Results

Initial length, weight, maximum twitch height, predrug resting tension and predrug twitch height of muscle bundles did not differ between groups. CPA increased halothane- and caffeine-induced contractures significantly. This increase was more pronounced in MHS and MHE than in MHN muscle bundles.

Conclusion

Inhibition of the SERCA activity by CPA enhances halothane- and caffeine-induced contractures especially in MHS and MHE skeletal muscle and may help for the diagnostic assignment of MH susceptibility. The status of SERCA activity may play a significant but so far unknown role in the genesis of malignant hyperthermia.  相似文献   

12.
The caffeine contracture of normal human muscle, which has been used as a model for malignant hyperpyrexia, is greatly potentiated by halothane. Prior administration of procaine markedly reduces the halothane-potentiated caffeine contracture, and procaine given at the height of the contracture induces relaxation. Lignocaine, on the other hand, produces a variable response and sometimes increases the contracture.The muscle from a patient with an inherited susceptibility to malignant hyperpyrexia contracted spontaneously with halothane alone, and this contracture was reversed by procaine.These experiments support the therapeutic use of procaine in malignant hyperpyrexia.  相似文献   

13.
Cooling increases the twitch force of frog skeletal muscle (Rana temporaria; Rana pipiens), but decreases the twitch force of tropical toad muscle (Leptodactylus insularis). Action potentials and intramembranous charge movement in frog and toad fibers were slowed identically by cooling. Cooling increased the integral of twitch Ca2+ detected by aequorin in frog fibers (1.4-fold), while also decreasing the peak and slowing the rate of decay. Conversely, cooling decreased the integral (0.6-fold) and the peak of twitch Ca2+ in toad fibers, without affecting the rate of decay. The difference in entire Ca2+ transients may account for cold-induced twitch potentiation in frogs and twitch paralysis in toads. In sustained contractions of toad fibers, cooling markedly decreased maximum force caused by: (i) tetanic stimulation, (ii) two-microelectrode voltage clamp steps, (iii) high [K+], or (iv) caffeine. Maximum force in sustained contractions was decreased moderately by cooling frog fibers. Rapid rewarming and simultaneous removal of high [K+] or caffeine during a sustained contraction, caused toad muscle force to rise towards the value corresponding to the warm temperature. This did not occur after removing high [K+] or caffeine from toad fibers kept in the cold. Transmission electron micrographs showed no relevant structural differences. Parvalbumins are thought to promote relaxation of frog muscle in the cold. The unique parvalbumin isoforms in toad muscle apparently lack this property. Accepted: 27 August 1998  相似文献   

14.
Chen KY  Zhu PH 《生理学报》1999,(2):153-160
用蛙胫前肌小束为材料, 研究了提高胞外钾[K+]O对咖啡因挛缩的作用.[K+]O从2 mmol/L提高到10或25 mmol/L, 由3 mmol/L咖啡因引起的挛缩明显增强.以PKC/PC (PKC和PC分别为在高钾和正常钾条件下的咖啡因挛缩)表示的咖啡因挛缩增强, 依赖[K+]O和高钾作用时间.随着10 mmol/L [K+]O作用时间延长, 直至10 min, 增强逐渐增加.但是, 25 mmol/L [K+]O作用1 min时增强达到最大, 然后下降到对照.PKC/PC变化时程不能用高钾引起的去极化解释, 而与由相似[K+]O引起的胞浆自由钙变化时程相符.提示, 至少在蛙骨骼肌, 高钾引起的咖啡因挛缩增强主要是由胞浆自由钙升高引起的.  相似文献   

15.
Potential mechanisms of fatigue (metabolic factors) and potentiation (phosphate incorporation by myosin phosphorylatable light chains) were investigated during recovery from a 60-s maximal voluntary isometric contraction (MVC) in the quadriceps muscle of 12 subjects. On separate days before and for 2 h after the 60-s MVC, either a 1-s MVC or electrically stimulated contractions were used as indexes to test muscle performance. Torque at the end of the 60-s MVC was 57% of the initial level, whereas torques from a 1-s MVC and 50-Hz stimulation were most depressed in the immediate recovery period. At this time, muscle biopsy analyses revealed significant decreases in ATP and phosphocreatine and a 19-fold increase in muscle lactate. Conversely, isometric twitch torque and torque from a 10-Hz stimulus were the least depressed of six contractile indexes and demonstrated potentiation of 25 and 34%, respectively, by 4 min of recovery (P less than 0.05). At this time, muscle lactate concentration was still 16 times greater than at rest. An increased phosphate content of the myosin phosphorylatable light chains (P less than 0.05) was also evident both immediately and 4 min after the 60-s MVC. We conclude that the 60-s MVC produced marked force decreases likely due to metabolic displacement, while the limited decline in the twitch and 10-Hz torques and their significant potentiation suggested that myosin phosphorylation may provide a mechanism to enhance contractile force under conditions of submaximal activation during fatigue.  相似文献   

16.
In 37 of 41 isolated frog skeletal muscle fiber preparations (one, two, or three fibers) the twitch was eliminated or reduced to less than 10% of control by exposing the fibers to a O-calcium, bicarbonate-buffered solution for 10 min or less. Replacing the bicarbonate by a phosphate buffer either prevented twitch inhibition or increased the O-calcium exposure time required for its production. It is concluded that surface membrane-bound calcium ions (presumably in the t-tubules) are required to couple the action potential to the mechanical response and that phosphate ions inhibit the loss of the membrane-bound calcium ions into an external calcium-free solution.  相似文献   

17.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

18.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

19.
Sarcoplasmic reticulum isolated from malignant hyperthermia-susceptible (MHS) muscle exhibits abnormalities in the regulation of calcium release. To identify the molecular basis of this abnormality, the Ca2+ release channel from both normal and MHS sarcoplasmic reticulum was examined using proteolytic digestion followed by immunoblot staining with a polyclonal antibody against the rabbit Ca2+ release channel protein. Under appropriate conditions, trypsin digestion of isolated sarcoplasmic reticulum vesicles from the two types of pigs revealed a distinct difference in the immunostaining pattern of the Ca2+ release channel-derived peptides. An approximate 86-kDa peptide was the predominant fragment in normal sarcoplasmic reticulum while an approximate 99-kDa peptide fragment was the major peptide detected in MHS sarcoplasmic reticulum. Digestion of sarcoplasmic reticulum vesicles isolated from four normal and four MHS pigs showed that the differences were highly reproducible. Trypsin digestion of sarcoplasmic reticulum isolated from heterozygous pigs, which contain one normal and one MHS allele, showed an antibody staining pattern that was intermediate between MHS and normal sarcoplasmic reticulum. These results can be explained by a primary amino acid sequence difference between the normal and MHS Ca2+ release channels and support the hypothesis that a mutation in the gene coding for the sarcoplasmic reticulum Ca2+ release channel is responsible for malignant hyperthermia.  相似文献   

20.
Caffeine and length dependence of staircase potentiation in skeletal muscle   总被引:1,自引:0,他引:1  
Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号