首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non-specific actin polymerization during the assay, fluorescent G-actin was mixed with thymosin beta4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion.  相似文献   

2.
We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at cell-cell junctions. Reconstitution biochemistry using the in vitro actin assembly assay identified α-actinin-4/focal segmental glomerulosclerosis 1 (FSGS1) as an essential factor. α-Actinin-4 specifically localized to sites of actin incorporation on purified membranes and at apical junctions in Madin-Darby canine kidney cells. Knockdown of α-actinin-4 decreased total junctional actin and inhibited actin assembly at the apical junction. Furthermore, a point mutation of α-actinin-4 (K255E) associated with FSGS failed to support actin assembly and acted as a dominant negative to disrupt actin dynamics at junctional complexes. These findings demonstrate that α-actinin-4 plays an important role in coupling actin nucleation to assembly at cadherin-based cell-cell adhesive contacts.  相似文献   

3.
Nucleation of polar actin filament assembly by a positively charged surface   总被引:6,自引:4,他引:2  
Polylysine-coated polystyrene beads can nucleate polar assembly of monomeric actin into filamentous form. This nucleation has been demonstrated by a combination of biochemical and structural experiments. The polylysine-coated beads accelerate the rate of actin assembly as detected by two different biochemical assays. Subsequent examination of the beads by electron microscopy reveals numerous actin filaments of similar length radiating from the beads. ATP promotes this bead-induced acceleration of assembly. Decoration of the filaments with the myosin fragment S1 shows that these filaments all have the same polarity, with the arrowhead pattern pointing toward the bead. The relevance of the system to in vitro mechanisms and its usefulness in other studies are discussed.  相似文献   

4.

Background

When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel.

Results

We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator). However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box) approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP.

Conclusion

By establishing an active 'dialogue' between an initial complex model and experimental observations, we could narrow the set of differential equations and parameters required to characterize the time-dependent changes of metabolites influencing actin nucleation on phagosomes. For this, the global model was dissected into three sub-models: ATP consumption, lipid interconversion, and nucleation of actin on phagosomal membranes. This scheme allowed us to describe this complex system with a relatively small set of differential equations and kinetic parameters that satisfactorily reproduced the experimental data.  相似文献   

5.
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.  相似文献   

6.
BACKGROUND: Actin filaments polymerize in vivo primarily from their fast-growing barbed ends. In cells and extracts, GTPgammaS and Rho-family GTPases, including Cdc42, stimulate barbed-end actin polymerization; however, the mechanism responsible for the initiation of polymerization is unknown. There are three formal possibilities for how free barbed ends may be generated in response to cellular signals: uncapping of existing filaments; severing of existing filaments; or de novo nucleation. The Arp2/3 complex localizes to regions of dynamic actin polymerization, including the leading edges of motile cells and motile actin patches in yeast, and in vitro it nucleates the formation of actin filaments with free barbed ends. Here, we investigated actin polymerization in soluble extracts of Acanthamoeba. RESULTS: Addition of actin filaments with free barbed ends to Acanthamoeba extracts is sufficient to induce polymerization of endogenous actin. Addition of activated Cdc42 or activation of Rho-family GTPases in these extracts by the non-hydrolyzable GTP analog GTPgammaS stimulated barbed-end polymerization, whereas immunodepletion of Arp2 or sequestration of Arp2 using solution-binding antibodies blocked Rho-family GTPase-induced actin polymerization. CONCLUSIONS: For this system, we conclude that the accessibility of free barbed ends regulates actin polymerization, that Rho-family GTPases stimulate polymerization catalytically by de novo nucleation of free barbed ends and that the primary nucleation factor in this pathway is the Arp2/3 complex.  相似文献   

7.
Yang W  Ren S  Zhang X  Gao M  Ye S  Qi Y  Zheng Y  Wang J  Zeng L  Li Q  Huang S  He Z 《The Plant cell》2011,23(2):661-680
The actin cytoskeleton is an important regulator of cell expansion and morphogenesis in plants. However, the molecular mechanisms linking the actin cytoskeleton to these processes remain largely unknown. Here, we report the functional analysis of rice (Oryza sativa) FH5/BENT UPPERMOST INTERNODE1 (BUI1), which encodes a formin-type actin nucleation factor and affects cell expansion and plant morphogenesis in rice. The bui1 mutant displayed pleiotropic phenotypes, including bent uppermost internode, dwarfism, wavy panicle rachis, and enhanced gravitropic response. Cytological observation indicated that the growth defects of bui1 were caused mainly by inhibition of cell expansion. Map-based cloning revealed that BUI1 encodes the class II formin FH5. FH5 contains a phosphatase tensin-like domain at its amino terminus and two highly conserved formin-homology domains, FH1 and FH2. In vitro biochemical analyses indicated that FH5 is capable of nucleating actin assembly from free or profilin-bound monomeric actin. FH5 also interacts with the barbed end of actin filaments and prevents the addition and loss of actin subunits from the same end. Interestingly, the FH2 domain of FH5 could bundle actin filaments directly and stabilize actin filaments in vitro. Consistent with these in vitro biochemical activities of FH5/BUI1, the amount of filamentous actin decreased, and the longitudinal actin cables almost disappeared in bui1 cells. The FH2 or FH1FH2 domains of FH5 could also bind to and bundle microtubules in vitro. Thus, our study identified a rice formin protein that regulates de novo actin nucleation and spatial organization of the actin filaments, which are important for proper cell expansion and rice morphogenesis.  相似文献   

8.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

9.
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.  相似文献   

10.
Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex, capping protein (CP), and actin-depolymerizing factor (ADF)/cofilin in actin "comet tails," using a minimal reconstituted system with nucleation-promoting factor (NPF)-coated beads. The Arp2/3 complex concentrates at nucleation sites near the beads as well as in the first actin shell. CP colocalizes with actin and is homogeneously distributed throughout the comet tail; it serves to constrain the spatial distribution of ATP/ADP-P(i) filament zones to areas near the bead. The association of ADF/cofilin with the actin network is therefore governed by kinetics of actin assembly, actin nucleotide state, and CP binding. A kinetic simulation accurately validates these observations. Following its binding to the actin networks, ADF/cofilin is able to break up the dense actin filament array of a comet tail. Stochastic severing by ADF/cofilin loosens the tight entanglement of actin filaments inside the comet tail and facilitates turnover through the macroscopic release of large portions of the aged actin network.  相似文献   

11.
Jasplakinolide paradoxically stabilizes actin filaments in vitro, but in vivo it can disrupt actin filaments and induce polymerization of monomeric actin into amorphous masses. A detailed analysis of the effects of jasplakinolide on the kinetics of actin polymerization suggests a resolution to this paradox. Jasplakinolide markedly enhances the rate of actin filament nucleation. This increase corresponds to a change in the size of actin oligomer capable of nucleating filament growth from four to approximately three subunits, which is mechanistically consistent with the localization of the jasplakinolide-binding site at an interface of three actin subunits. Because jasplakinolide both decreases the amount of sequestered actin (by lowering the critical concentration of actin) and augments nucleation, the enhancement of polymerization by jasplakinolide is amplified in the presence of actin-monomer sequestering proteins such as thymosin beta(4). Overall, the kinetic parameters in vitro define the mechanism by which jasplakinolide induces polymerization of monomeric actin in vivo. Expected consequences of jasplakinolide function are consistent with the experimental observations and include de novo nucleation resulting in disordered polymeric actin and in insufficient monomeric actin to allow for remodeling of stress fibers.  相似文献   

12.
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1- pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre- activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.  相似文献   

13.
《Biophysical journal》2020,118(1):182-192
Bundles of actin filaments are central to a large variety of cellular structures such as filopodia, stress fibers, cytokinetic rings, and focal adhesions. The mechanical properties of these bundles are critical for proper force transmission and force bearing. Previous mathematical modeling efforts have focused on bundles’ rigidity and shape. However, it remains unknown how bundle length and buckling are controlled by external physical factors. In this work, we present a biophysical model for dynamic bundles of actin filaments submitted to an external load. In combination with in vitro motility assays of beads coated with formins, our model allowed us to characterize conditions for bead movement and bundle buckling. From the deformation profiles, we determined key biophysical properties of tethered actin bundles such as their rigidity and filament density.  相似文献   

14.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

15.
《Biophysical journal》2021,120(20):4442-4456
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin’s nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin’s nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.  相似文献   

16.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

17.
Matrix remodeling by phagocytic fibroblasts is essential for growth and development but the regulatory processes are undefined. We evaluated the impact of spreading on the binding step of collagen phagocytosis with a novel culture system that more closely replicates phagocytosis in vivo than previous models. 3T3 cells were plated on collagen-coated beads, thereby loading only ventral surfaces (adhesion with spreading), or were allowed to spread on collagen films and then loaded with beads on their dorsal surfaces (adhesion without spreading). Ventral surfaces bound three-fold more beads than dorsal surfaces which was accompanied by accelerated phagosomal maturation. Arp3 and cortactin, markers of the actin-associated spreading machinery, strongly accumulated around ventrally but not dorsally loaded beads, suggesting that spreading contributes to enhanced binding of ventral surfaces. Further, ventral surfaces exhibited two-fold more free alpha2beta1 integrins, the major collagen receptors. Notably, compared to cells spread on collagen substrates, spreading cells exhibited a three-fold higher alpha2beta1 mobile fraction which was correlated with limited engagement of ventral receptors by actin filaments. Thus integrin ligation by actin filaments regulates the mobility of collagen receptors which in turn mediates the enhanced binding of collagen beads on spreading surfaces.  相似文献   

18.
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.  相似文献   

19.
Akin O  Mullins RD 《Cell》2008,133(5):841-851
Capping protein (CP) is an integral component of Arp2/3-nucleated actin networks that drive amoeboid motility. Increasing the concentration of capping protein, which caps barbed ends of actin filaments and prevents elongation, increases the rate of actin-based motility in vivo and in vitro. We studied the synergy between CP and Arp2/3 using an in vitro actin-based motility system reconstituted from purified proteins. We find that capping protein increases the rate of motility by promoting more frequent filament nucleation by the Arp2/3 complex and not by increasing the rate of filament elongation as previously suggested. One consequence of this coupling between capping and nucleation is that, while the rate of motility depends strongly on the concentration of CP and Arp2/3, the net rate of actin assembly is insensitive to changes in either factor. By reorganizing their architecture, dendritic actin networks harness the same assembly kinetics to drive different rates of motility.  相似文献   

20.
J R Glenney  P Kaulfus  K Weber 《Cell》1981,24(2):471-480
We have studied the mechanism of Ca++-dependent restriction of actin filament length by villin, one of the major actin-associated proteins of intestinal microvilli microfilament bundles. Villin acts, even at a ratio of 1 to 1000 with respect to actin, very efficiently as a Ca++-dependent nucleation factor on actin assembly. This gives rise to unidirectional assembly, with the morphologically defined "barbed" end of the resulting filament being capped. Consequently, at steady state treadmilling of actin monomers through the filament is inhibited. Increase of the villin-to-actin ratio enhances the number of nucleated filaments necessarily shorter in length. This results finally in nonsedimentable F actin and a low molecular weight complex of one villin and three monomeric actins, which itself is a potent nucleator. Thus restriction of actin assembly by villin is not due to a direct inhibition of assembly but arises as the consequence of strongly enhanced nucleation followed by unidirectional elongation at the pointed end of the nucleated filaments. In addition, in the presence of Ca++-villin, but not the villin-actin complex, seems able to "break" or "sever" preformed F actin filaments. Thus a variety of cellular phenomena-nucleation, unidirectional assembly, filament end capping, nonpolymerizable actin and F actin bundles-can be observed in vitro in a two-protein component system modulated by the concentration of free Ca++.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号