首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation.  相似文献   

2.
K K Niyogi  R L Last  G R Fink    B Keith 《The Plant cell》1993,5(9):1011-1027
Suppressors of the blue fluorescence phenotype of the Arabidopsis trp1-100 mutant can be used to identify mutations in genes involved in plant tryptophan biosynthesis. Two recessive suppressor mutations define a new gene, TRP4. The trp4 mutant and the trp1-100 mutant are morphologically normal and grow without tryptophan, whereas the trp4; trp1-100 double mutant requires tryptophan for growth. The trp4; trp1-100 double mutant does not segregate at expected frequencies in genetic crosses because of a female-specific defect in transmission of the double mutant genotype, suggesting a role for the tryptophan pathway in female gametophyte development. Genetic and biochemical evidence shows that trp4 mutants are defective in a gene encoding the beta subunit of anthranilate synthase (AS). Arabidopsis AS beta subunit genes were isolated by complementation of an Escherichia coli anthranilate synthase mutation. The trp4 mutation cosegregates with one of the genes, ASB1, located on chromosome 1. Sequence analysis of the ASB1 gene from trp4-1 and trp4-2 plants revealed different single base pair substitutions relative to the wild type. Anthranilate synthase alpha and beta subunit genes are regulated coordinately in response to bacterial pathogen infiltration.  相似文献   

3.
PDX3 and SALT OVERLY SENSITIVE4 (SOS4), encoding pyridoxine/pyridoxamine 5'-phosphate oxidase and pyridoxal kinase, respectively, are the only known genes involved in the salvage pathway of pyridoxal 5'-phosphate in plants. In this study, we determined the phenotype, stress responses, vitamer levels, and regulation of the vitamin B(6) pathway genes in Arabidopsis (Arabidopsis thaliana) plants mutant in PDX3 and SOS4. sos4 mutant plants showed a distinct phenotype characterized by chlorosis and reduced plant size, as well as hypersensitivity to sucrose in addition to the previously noted NaCl sensitivity. This mutant had higher levels of pyridoxine, pyridoxamine, and pyridoxal 5'-phosphate than the wild type, reflected in an increase in total vitamin B(6) observed through HPLC analysis and yeast bioassay. The sos4 mutant showed increased activity of PDX3 as well as of the B(6) de novo pathway enzyme PDX1, correlating with increased total B(6) levels. Two independent lines with T-DNA insertions in the promoter region of PDX3 (pdx3-1 and pdx3-2) had decreased PDX3 activity. Both also had decreased activity of PDX1, which correlated with lower levels of total vitamin B(6) observed using the yeast bioassay; however, no differences were noted in levels of individual vitamers by HPLC analysis. Both pdx3 mutants showed growth reduction in vitro and in vivo as well as an inability to increase growth under high light conditions. Increased expression of salvage and some of the de novo pathway genes was observed in both the pdx3 and sos4 mutants. In all mutants, increased expression was more dramatic for the salvage pathway genes.  相似文献   

4.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

5.
In many plant-pathogen interactions, resistance is associated with the synthesis and accumulation of salicylic acid (SA) and pathogenesis-related (PR) proteins. At least two general classes of mutants with altered resistance to pathogen attack have been identified in Arabidopsis. One class exhibits increased susceptibility to pathogen infection; the other class exhibits enhanced resistance to pathogens. In an attempt to identify mutations in resistance-associated loci, we screened a population of T-DNA tagged Arabidopsis thaliana ecotype Wassilewskija (Ws) for mutants showing constitutive expression of the PR-1 gene (cep). A mutant was isolated and shown to constitutively express PR-1, PR-2, and PR-5 genes. This constitutive phenotype segregated as a single recessive trait in the Ws genetic background. The mutant also had elevated levels of SA, which are responsible for the cep phenotype. The cep mutant spontaneously formed hypersensitive response (HR)-like lesions on the leaves and cotyledons and also exhibited enhanced resistance to virulent bacterial and fungal pathogens. Genetic analyses of segregating progeny from outcrosses to other ecotypes unexpectedly revealed that alterations in more than one gene condition the constitutive expression of PR genes in the original mutant. One of the mutations, designated cpr20, maps to the lower arm of chromosome 4 and is required for the cep phenotype. Another mutation, which has been termed cpr21, maps to chromosome 1 and is often, but not always, associated with this phenotype. The recessive nature of the cep trait suggests that the CPR20 and CPR21 proteins may act as negative regulators in the disease resistance signal transduction pathway.  相似文献   

6.
The eight enzymes of the tricarboxylic acid (TCA) cycle are encoded by at least 15 different nuclear genes in Saccharomyces cerevisiae. We have constructed a set of yeast strains defective in these genes as part of a comprehensive analysis of the interactions among the TCA cycle proteins. The 15 major TCA cycle genes can be sorted into five phenotypic categories on the basis of their growth on nonfermentable carbon sources. We have previously reported a novel phenotype associated with mutants defective in the IDH2 gene encoding the Idh2p subunit of the NAD+-dependent isocitrate dehydrogenase (NAD-IDH). Null and nonsense idh2 mutants grow poorly on glycerol, but growth can be enhanced by extragenic mutations, termed glycerol suppressors, in the CIT1 gene encoding the TCA cycle citrate synthase and in other genes of oxidative metabolism. The TCA cycle mutant collection was utilized to search for other genes that can suppress idh2 mutants and to identify TCA cycle genes that display a similar suppressible growth phenotype on glycerol. Mutations in 7 TCA cycle genes were capable of functioning as suppressors for growth of idh2 mutants on glycerol. The only other TCA cycle gene to display the glycerol-suppressor-accumulation phenotype was IDH1, which encodes the companion Idh1p subunit of NAD-IDH. These results provide genetic evidence that NAD-IDH plays a unique role in TCA cycle function.  相似文献   

7.
To identify new genes important for anther development, we screened for male sterile mutants among a population of Arabidopsis ecotype Columbia (Col) mutagenized by T DNA insertion (provided by ARBC). A male sterile mutant line with normal vegetative and flora development but no seed yield was isolated from Salk_118481 line. T DNA insertion site identification showed that there were no T DNA sequences in the genome of the mutants. Genetic analysis indicated that the mutant was controlled by a single recessive nuclear gene named filament no elongation because the filament of the mutant remains very short at the 13-14 stage of anther development. The fne gene was mapped to a region of 97kb between the molecular makers MBD2 and MMG4 on chromosome 5 using map based cloning technique. No genes involved filament elongation were reported in this region, so we believe that FNE gene could be a new gene controlling filament elongation in Arabidopsis.  相似文献   

8.
9.
10.
在T-DNA插入突变体Salk_118481株系的群体中,筛选到一株雄性不育突变体,用T-DNA序列上的一对引物进行PCR鉴定表明其基因组中没有T DNA插入。通过背景纯化与遗传分析发现该雄性不育突变体是由单个隐性基因控制的,引起不育的主要原因是在花药发育的第13~14期,花丝不能伸长以完成授粉,故该突变体命名为fne (filament no elongation)。利用图位克隆的方法对FNE基因进行了定位,结果表明FNE基因位于第五条染色体上分子标记MBD2和MMG4之间的97kb区间内。目前该区间内尚未见到控制花丝伸长基因的报道,因此,FNE基因是一个控制花丝伸长的新基因。  相似文献   

11.
Thirteen recessive cold sensitive nuclear division arrest mutants were isolated from the fission yeast Schizosaccharomyces pombe. Twelve unlinked genes were defined; six in chromosome I, three in chromosome II and two in chromosome III. The map positions of three nuclear division arrest genes (nda1, nda2 and nda3) in chromosome II were determined precisely. Together with the previously obtained temperature-sensitive cell division cycle mutations, at least 20 genes appear to control the nuclear division of the fission yeast. Physiological studies indicated that most cold sensitive nda mutants incubated previously at 22 degrees C proceeded with a synchronously normal cell-cycle after temperature shift-up. The morphology of the nuclei and nuclear chromatin region was studied by the 4',6-diamidino-2-phenylindole staining method and by electron microscopy. Each mutant exhibited characteristic nuclear morphology at 22 degrees C, showing the specific blockages. The nda genes seem to control a pathway of structural alterations in the nuclear chromatin region with the order hemisphere, condensed ellipsoid, segregating U-form and separating hemispheres. Two genes, nda2 and nda3, pleiotropically control nuclear division, nuclear location and cell shape. The terminal phenotype of nda2-KM52 is characterized by the nuclear displacement, the absence of a spindle and abnormal locations of spindle pole bodies. The cells of nda3-KM311 were aberrant in shape and contained a partially separated chromatin region with a long spindle. Together with the results of the accompanying paper, we conclude that nda2 and nda3 genes control nuclear and cytoplasmic microtubular organization.  相似文献   

12.
Liu TL  Kuai BK  Liu ZX  Zhao DL  Shen DL 《Genetika》2006,42(8):1089-1095
In Arabidopsis, map-based cloning has been developed to an effective method in mutant genetic analysis because high-density markers are available, candidate genes or genomic sequences can be amplified by PCR and transgenic techniques are simplified. Mutant ses named from shortened early-stage siliques was used as an example to show how to map a mutant in this day. By the process of bulked segregants analysis, linkage testing, large-scale and fine scale mapping, mutant ses was narrowed into a 67 kb interval from CER448792 (2000541 bp) to CER464544 (2067844 bp) crossing over the right of BAC F12K11 to the left of the BAC F4H5 including at most 22 putative genes on the top of chromosome l. In sequence-based map of Arabidopsis genes with Mutant phenotype (SMAGMP) mutant ses was between ATlg06150 (EMB1444) and ATlg08060 (MOM). The SES mapping also showed that developed markers on polymorphism site of CAPC not only were simplified and but worked well. 24 markers from CAPC used in the mapping maybe help Arabidopsis researches with others and the methods related to SES mapping also gave an example of positional cloning.  相似文献   

13.
14.
A sequence-based map of Arabidopsis genes with mutant phenotypes   总被引:9,自引:0,他引:9  
The classical genetic map of Arabidopsis contains 462 genes with mutant phenotypes. Chromosomal locations of these genes have been determined over the past 25 years based on recombination frequencies with visible and molecular markers. The most recent update of the classical map was published in a special genome issue of Science that dealt with Arabidopsis (D.W. Meinke, J.M. Cherry, C. Dean, S.D. Rounsley, M. Koornneef [1998] Science 282: 662-682). We present here a comprehensive list and sequence-based map of 620 cloned genes with mutant phenotypes. This map documents for the first time the exact locations of large numbers of Arabidopsis genes that give a phenotype when disrupted by mutation. Such a community-based physical map should have broad applications in Arabidopsis research and should serve as a replacement for the classical genetic map in the future. Assembling a comprehensive list of genes with a loss-of-function phenotype will also focus attention on essential genes that are not functionally redundant and ultimately contribute to the identification of the minimal gene set required to make a flowering plant.  相似文献   

15.
Wild-type Escherichia coli utilizes glycerol aerobically through an inducible pathway mediated by an ATP-dependent kinase and a glycerol 3-phosphate dehydrogenase which is a flavoprotein. A mutant, strain ECL424, employing a novel pathway for glycerol utilization was isolated. The novel pathway is mediated by an NAD-linked dehydrogenase and a dihydroxyacetone specific enzyme II of the phosphoenolpyruvate phosphotransferase system. This study describes the selection from strain ECL424, a derivative which grows more rapidly on glycerol. The derivative, strain ECL428, produces twice the parental levels of both the dehydrogenase and the enzyme II during growth on glycerol. The function of the dehydrogenase in wild-type cells is unknown, although hydroxyacetone (acetol), 3-hydroxy-2-butanone (acetoin), and 1-amino-2-propanone are gratuitous inducers. The induction can be prevented by glucose whose effect can be cancelled by external cyclic AMP. The effects of hydroxyacetone, glucose, and cyclic AMP are attenuated in the two mutants in which the dehydrogenase is produced at high basal levels. The dihydroxyacetone specific enzyme II is inducible by the substrate in both wild-type and mutant strains and serves for growth on the triose.  相似文献   

16.
The biosynthesis of histidine (His) in microorganisms, long studied through the isolation and characterization of auxotrophic mutants, has emerged as a paradigm for the regulation of metabolism and gene expression. Much less is known about His biosynthesis in flowering plants. One limiting factor has been the absence of large collections of informative auxotrophs. We describe here the results of a systematic screen for His auxotrophs of Arabidopsis (Arabidopsis thaliana). Ten insertion mutants disrupted in four different biosynthetic genes (HISN2, HISN3, HISN4, HISN6A) were identified through a combination of forward and reverse genetics and were shown to exhibit an embryo-defective phenotype that could be rescued by watering heterozygous plants with His. Male transmission of the mutant allele was in several cases reduced. Knockouts of two redundant genes (HISN1B and HISN5A) had no visible phenotype. Another mutant blocked in the final step of His biosynthesis (hisn8) and a double mutant altered in the redundant first step of the pathway (hisn1a hisn1b) exhibited a combination of gametophytic and embryonic lethality in heterozygotes. Homozygous mutant seedlings and callus tissue produced from rescued seeds appeared normal when grown in the presence of His but typically senesced after continued growth in the absence of His. These knockout mutants document the importance of His biosynthesis for plant growth and development, provide valuable insights into amino acid transport and source-sink relationships during seed development, and represent a significant addition to the limited collection of well-characterized auxotrophs in flowering plants.  相似文献   

17.
Radiation-Sensitive Mutants of Arabidopsis Thaliana   总被引:4,自引:0,他引:4       下载免费PDF全文
Five Arabidopsis mutants have been isolated on the basis of hypersensitivity of leaf tissue to UV light. For each mutant, the UV-hypersensitive phenotype (uvh) was inherited as a single recessive Mendelian trait. In addition, each uvh mutant represented a separate complementation group. Three of the mutations producing the UV hypersensitive phenotype have been mapped relative to either genetic markers or physical microsatellite polymorphisms. Locus UVH1 is linked to nga76 on chromosome 5, UVH3 to GL1 on chromosome three, and UVH6 to nga59 on chromosome 1. Each uvh mutant has a characteristic pattern of sensitivity based on UV sensitivity of leaf tissue, UV sensitivity of root tissue, and ionizing radiation sensitivity of seeds. On the basis of these patterns, possible molecular defects in these mutants are discussed.  相似文献   

18.
Flowering in Arabidopsis thaliana is promoted by long-day (LD) photoperiods such that plants grown in LD flower earlier, and after the production of fewer leaves, than plants grown in short-day (SD) photoperiods. The early-flowering 3 ( elf 3) mutant of Arabidopsis , which is insensitive to photoperiod with regard to floral initiation has been characterized. elf 3 mutants are also altered in several aspects of vegetative photomorphogenesis, including hypocotyl elongation. When inhibition of hypocotyl elongation was measured, elf 3 mutant seedlings were less responsive than wild-type to all wavelengths of light, and most notably defective in blue and green light-mediated inhibition. When analyzed for the flowering-time phenotype, elf 3 was epistatic to mutant alleles of the blue-light receptor encoding gene, HY 4. However, when elf 3 mutants were made deficient for functional phytochrome by the introduction of hy 2 mutant alleles, the elf 3 hy 2 double mutants displayed the novel phenotype of flowering earlier than either single mutant while still exhibiting photoperiod insensitivity, indicating that a phytochrome-mediated pathway regulating floral initiation remains functional in elf 3 single mutants. In addition, the inflorescences of one allelic combination of elf 3 hy 2 double mutants form a terminal flower similar to the structure produced by tfl 1 single mutants. These results suggest that one of the signal transduction pathways controlling photoperiodism in Arabidopsis is regulated, at least in part, by photoreceptors other than phytochrome, and that the activity of the Arabidopsis inflorescence and floral meristem identity genes may be regulated by this same pathway.  相似文献   

19.
Germination and early seedling establishment are developmental stages in which plants face limited nutrient supply as their photosynthesis mechanism is not yet active. For this reason, the plant must mobilize the nutrient reserves provided by the mother plant in order to facilitate growth. Autophagy is a catabolic process enabling the bulk degradation of cellular constituents in the vacuole. The autophagy mechanism is conserved among eukaryotes, and homologs of many autophagy-related (ATG) genes have been found in Arabidopsis thaliana. T-DNA insertion mutants (atg mutants) of these genes display higher sensitivity to various stresses, particularly nutrient starvation. However, the direct impact of autophagy on cellular metabolism has not been well studied. In this work, we used etiolated Arabidopsis seedlings as a model system for carbon starvation. atg mutant seedlings display delayed growth in response to carbon starvation compared with wild-type seedlings. High-throughput metabolomic, lipidomic, and proteomic analyses were performed, as well as extensive flux analyses, in order to decipher the underlying causes of the phenotype. Significant differences between atg mutants and wild-type plants have been demonstrated, suggesting global effects of autophagy on central metabolism during carbon starvation as well as severe energy deprivation, resulting in a morphological phenotype.  相似文献   

20.
Floral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by ectopic expression of the FLOWERING LOCUS T (FT) gene, a floral pathway integrator. Molecular cloning of TFL2 showed that it encodes a protein with homology to heterochromatin protein 1 (HP1) of animals and Swi6 of fission yeast. TFL2 protein localizes in subnuclear foci and expression of the TFL2 gene complemented yeast swi6(-) mutants. These results suggested that TFL2 might function as an HP1 in Arabidopsis: Gene expression analyses using DNA microarrays, however, did not show an increase in the expression of heterochromatin genes in tfl2 mutants but instead showed the upregulation of the floral homeotic genes APETALA3, PISTILLATA, AGAMOUS and SEPALLATA3. The pleiotropic phenotype of the tfl2 mutant could reflect the fact that TFL2 represses the expression of multiple genes. Our results demonstrate that despite its homology to HP1, TFL2 is involved in the repression of specific euchromatin genes and not heterochromatin genes in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号