首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substrate specificity of purified rat liver glutathione S-transferases (GSTs) for a series of gamma-glutamyl-modified GSH analogues was investigated. GST isoenzyme 3-3 catalysed the conjugation of 1-chloro-2,4-dinitrobenzene with six out of the nine analogues. alpha-L-Glu-L-Cys-Gly and alpha-D-Glu-L-Cys-Gly showed catalytic efficiencies of 40% and 130% that of GSH respectively. The GSH analogue with an alpha-D-glutamyl moiety appeared to be a highly isoenzyme-3-3-specific co-substrate: kcat./Km with GST isoenzyme 4-4 was only about 5% that with GST isoenzyme 3-3, and no enzymic activity was detectable with GST isoenzymes 1-1 and 2-2. GST isoenzyme 4-4 showed some resemblance to GST 3-3: five out of nine co-substrate analogues were accepted by this second isoenzyme of the Mu multigene family. Isoenzymes 1-1 and 2-2, of the Alpha multigene family, accepted only two alternative co-substrates, which indicates that their GSH-binding site is much more specific.  相似文献   

2.
Glycosylated indolocarbazoles related to the antibiotic rebeccamycin represent an important class of antitumour drugs. In the course of our structure-activity relationship studies, new rebeccamycin analogues modified at the imide moiety were synthesised. The antiproliferative activity of the compounds was evaluated on three human cancer cell lines, A2780 (ovarian cancer), H460 (lung cancer), and GLC4 (small-cell lung cancer). The in vitro cytotoxicity of compounds 2 and 4, characterised respectively by a 1,3-dioxolan and (1,3-dioxolan-4-yl)methylene groups linked to the imide moiety, was higher than the reference compound, edotecarin. The effect of compound 2 in inducing tumour regression in the A2780 xenograft model was also investigated.  相似文献   

3.
Dehydroepiandrosterone (DHEA) and its metabolite 7α-OH DHEA have many diverse physiological, biological and biochemical effects encompassing various cell types, tissues and organs. In in vitro studies, DHEA analogues have myriad biological actions, but in vivo, especially in oral administration, DHEA produces far more limited clinical effects. One of the possible solutions of this problem is conversion of DHEA to active analogues and/or its transformation into prodrug form. In this article, the studies on the conversion of DHEA and 7α-OH DHEA into their phosphatides by the phosphodiester approach are described. In this esterification, N,N-dicyclohexylcarbodiimide (DCC) was the most efficient coupling agent as well as p-toluenesulphonyl chloride (TsCl).  相似文献   

4.
A series of S-alkyl L-homocysteine analogues of glutathione was synthesized with varied oxidation state of the sulfur and tested for inhibition of rat kidney gamma-glutamyl transpeptidase (GGT). The strong selectivity of the enzyme with respect to the sulfur oxidation state reveals important information for the development of powerful competitive inhibitors.  相似文献   

5.
The design, synthesis, in vitro and in vivo activities of novel alpha-bromoacrylic derivatives of distamycin A, modified at the amidino moiety by the replacement with basic or non-basic groups are reported. In spite of the relevance of these modifications of distamycin frame, the new derivatives are potent cytotoxics. The presence of the amidino moiety, is, therefore; not an absolute requirement for the activity. In particular due to a favorable myelotoxicity/cytotoxicity ratio, guanidino derivative PNU 166196 was selected for clinical development.  相似文献   

6.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

7.
Previous studies have indicated that the methylvalerate subunit of bleomycin (BLM) plays an important role in facilitating DNA cleavage by BLM and deglycoBLM. Eleven methylvalerate analogues have been synthesized and incorporated into deglycoBLM congeners by the use of solid-phase synthesis. The effect of the valerate moiety in the deglycoBLM analogues has been studied by comparison with the parent deglycoBLM A(5) using supercoiled DNA relaxation and sequence-selective DNA cleavage assays. All of the deglycoBLM analogues were found to effect the relaxation of the plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A(5). Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage.  相似文献   

8.
The gamma-glutamyl transpeptidase (GGT) purified from rat kidney reacts with a series of eight parasubstituted L-glutamyl gamma-anilides, in the presence of Gly-Gly, catalyzing the formation of gamma-Glu-Gly-Gly (pH 8.0, 37 degrees C). The transpeptidation reaction was followed through the discontinuous colorimetric determination of the concentration of released parasubstituted aniline. Steady-state kinetic studies were performed to measure k(cat) and K(M) values for each anilide substrate. A Hammett plot constructed by the correlation of log(k(cat)) and the sigma(-) parameter for each anilide substrate displays statistically significant upward curvature, consistent with a general-acid-catalyzed acylation mechanism in which the geometry of the transition state changes with the nature of the para substituent. Kinetic isotope effects were measured and are consistent with a reaction involving a proton in flight at the rate-limiting transition state. The pH-rate profiles measured over pH 7.0-9.5 are bell-shaped with kinetic pK(a) values that may be attributed to the active site nucleophile (or its general-base catalytic partner) and the active-site general acid. The variation of the latter pK(a) value as a function of temperature is consistent with an enthalpy of ionization expected for an ammonium ion acting as a general acid. Examination of the variation of k(cat) as a function of temperature gave values for the enthalpy and entropy of activation that are similar to those determined for the general-acid-catalyzed breakdown of the tetrahedral intermediate formed during acylation of chymotrypsin by similar amide substrates.  相似文献   

9.
10.
The substrate specificity of rat liver microsomal glutathione transferase toward glutathione has been examined in a systematic manner. Out of a glycyl-modified and eight gamma-glutamyl-modified glutathione analogues, it was found that four (glutaryl-L-Cys-Gly, alpha-L-Glu-L-Cys-Gly, alpha-D-Glu-L-Cys-Gly, and gamma-L-Glu-L-Cys-beta-Ala) function as substrates. The kinetic parameters for three of these substrates (the alpha-D-Glu-L-Cys-Gly analogue gave very low activity) were compared with those of GSH with both unactivated and the N-ethylmaleimide-activated microsomal glutathione transferase. The alpha-L-Glu-L-Cys-Gly analogue is similar to GSH in that it has a higher kcat (6.9 versus 0.6 s-1) value with the activated enzyme compared with the unactivated enzyme but displays a high Km (6 versus 11 mM) with both forms. Glutaryl-L-Cys-Gly, in contrast, exhibited a similar kcat (8.9 versus 6.7 s-1) with the N-ethylmaleimide-treated enzyme but retains a higher Km value (50 versus 15 mM). Thus, the alpha-amino group of the glutamyl residue in GSH is important for the activity of the activated microsomal glutathione transferase. These observations were quantitated by analyzing the changes in the Gibbs free energy of binding calculated from the changes in kcat/Km values, comparing the analogues to GSH and each other. It is estimated that the binding energy of the alpha-amino group of the glutamyl residue in GSH contributes 9.7 kJ/mol to catalysis by the activated enzyme, whereas the corresponding value for the unactivated enzyme is 3.2 kJ/mol. The importance of the acidic functions in glutathione is also evident as shown by the lack of activity with 4-aminobutyric acid-L-Cys-Gly and the low kcat/Km values with gamma-L-Glu-L-Cys-beta-Ala (0.03 and 0.01 mM-1s-1 for unactivated and activated enzyme, respectively). Utilization of binding energy from a correctly positioned carboxyl group in the glycine residue (10 and 17 kJ/mol for unactivated and activated enzyme, respectively) therefore also appears to be required for optimal activity and activation. A conformational change in the microsomal glutathione transferase upon treatment with N-ethylmaleimide or trypsin, which allows utilization of binding energy from the alpha-amino group of GSH as well as the glycine carboxyl in catalysis, is suggested to account for at least part of the activation of the enzyme.  相似文献   

11.
The syntheses and analyses of GSSG analogues with modified ionizable groups are described. Using the mixed anhydride method, three symmetrical and three asymmetrical peptide analogues were obtained in moderate overall yields. The products were analyzed by HPLC, 1H-NMR, thin-layer electrophoresis, and amino acid analysis. They were used to study enzyme:ligand interactions in glutathione reductase.  相似文献   

12.
A new indolocarbazole compound, NB-506 (1), modified at the glucose group yielded a beta-D-glucopyranoside, J-107,088 (2), which showed potent anticancer activity. A beta-D-ribofuranoside, J-109,534 (3), was found to be 6 times more potent than J-107,088 at inhibiting topoisomerase I.  相似文献   

13.
Six new endomorphin analogues, incorporating constrained amino acids in place of native proline have been synthesized. Residues of (S)-azetidine-2-carboxylic acid (Aze), 3,4-dehydro-(S)-proline (Δ3Pro), azetidine-3-carboxylic acid (3Aze) and dehydro-alanine (ΔAla) have been used to prepare [Δ3Pro2]EM-2 (1), [Aze2]EM-1 (2), [Aze2]EM-2 (3), [3Aze2]EM-1 (4), [3Aze2]EM-2 (5) and [ΔAla2]EM-2 (6). Binding assays and functional bioactivities for μ- and δ-receptors are reported. The highest affinity, bioactivity and selectivity are shown by peptides 2 and 3 containing the Aze residue.  相似文献   

14.
The present study describes the synthesis and pharmacological profiles of new olivacine related compounds, possessing a modified D ring. The impact of this modification has been evaluated with respect to the cytotoxic and in vivo antitumoral effects of these molecules and in comparison with parent S 16020-2 previously prepared and investigated in our laboratory. The D ring size and number of nitrogen atoms as well as the position of the aminoalkyl substituent have a profound impact on the cytotoxic and antitumoral profiles. Thus out of the prepared pyrazinocarbazole compounds, 2 is devoid of any substantial cytotoxic and antitumoral activities while the pyrimidocarbazole 3 has a similar profile compared to 1 (S 16020-2). L1210 and P388 in vivo antitumoral effects are lost for both imidazocarbazoles 4 and 5, but the former conserves an in vivo antitumoral effect on B16 melanoma, this effect being the largest in the series. Structural similarities and differences amongst the studied compounds could be evidenced by calculation of global properties such as molecular electrostatic potentials (MEP maps) and partition coefficients (logP), thus adding information on the impact of chemical changes on these two parameters known to influence biological behavior.  相似文献   

15.
1. Phenol compounds (ellagic acid, quercetin and purpurogallin), glutathione analogues (S-hexylglutathione and S-octylglutathione) and a diuretic drug (ethacrynic acid) were compared for their inhibitory effects on glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) in the canine erythrocytes. 2. All these compounds inhibited GST activity; quercetin was found to be the most potent inhibitor. 3. Ellagic acid, purpurogallin, quercetin and ethacrynic acid inhibited GR activity; S-hexylglutathione and S-octylglutathione had no effect on GR and GSH-Px activities. 4. Quercetin and purpurogallin inhibited GST non-competitively toward glutathione, whereas ellagic acid showed a competitive inhibition. Ellagic acid and purpurogallin inhibited GR non-competitively toward oxidized glutathione.  相似文献   

16.
A series of Locusta adipokinetic hormone I (AKH-I), C-terminal threonine residue using a combination of solid- and liquid-phase methodology and evaluated in Locusta migratoria, in a lipid mobilization assay in vivo and an acetate uptake assay in vitro. Modifications at Thr10 of AKH-I involved replacement of its C-terminal amide by the groups -OH, -OCH3, -NHCH3, -N(CH3)2, and -NHC6H5; the last three groups were also applied to the amide of AKH-I-[Thr(Brl)10]. The methyl ester, monomethyl, and dimethyl analogues were all of lower activity than the parent in the lipid mobilization assay, but lost less than two orders of potency. In the acetate uptake assay, again the methyl ester analogue showed the greatest retention of biological activity of all modified peptides. A cyclic analogue, cyclo (PLNFTPNWGT), was active in both assay, but only at very high concentrations. Almost all analogues were more active in the acetate uptake assay than in the lipid assay, but unusually, AKH-I-NHCH3 and AKH-I-N(CH3)2, together with cyclo (PLNFTPNWGT), were more active in the lipid mobilization assay. In addition, the acid AKH-I analogue did not suffer as large a loss in potency in the lipid mobilization assay as in the acetate uptake assay, although it was less potent in the former. The relative potencies of these two methyl analogues contrast with those for AKH AKH-I-[Thr(Bzl)10]-NHCH3 and AKH-I-[Thr(Bzl)10]-N(CH3)2, which, together with both phenyl analogues, were significantly more active in the acetate uptake assay. We conclude that the acetate uptake assay has a greater preference for a hydrophobic C-terminus, compared with the lipid mobilization assay.  相似文献   

17.
A series of fluconazole analogues 5-20 incorporating azaindole and indole moieties were prepared using oxirane intermediates synthesized under microwave irradiation. All of the compounds were evaluated in vitro against two clinically important fungi, Candida albicans and Aspergillus fumigatus. Four derivatives 6, 13, 14 and 18 exerted high antifungal activity against C. albicans with MIC(80) values 3- to 28-fold lower than that of fluconazole.  相似文献   

18.
The design, synthesis and in vitro activities of a series of cinnamoyl nitrogen mustard pyrazole analogues of tallimustine 8-13, in which the amidino moiety has been replaced by moieties of different physico-chemical features are described, and the structure-activity relationships are discussed. In spite of the relevance of these modifications on the amidino moiety, these derivatives showed significant growth inhibitory activity against mouse leukemia L1210 cells. A selected series of compounds have been evaluated for their sequence selective alkylating properties and cytotoxicity against human K562 leukemia cells. Therefore, the presence of the amidino moiety, and in general of a basic moiety, is not an absolute requirement for biological activity. Our preliminary results indicated that the compounds of this series have a pattern of alkylation similar to that of tallimustine, but they seem to be less reactive overall in alkylating naked DNA.  相似文献   

19.
In hamster heart, the majority of the phosphatidylcholine is synthesized via the CDP-choline pathway, and the rate-limiting step of this pathway is catalysed by CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15). We have shown previously [Choy (1982) J. Biol. Chem. 257, 10928-10933] that, in the myopathic heart, the level of cardiac CTP was diminished during the development of the disease. In order to maintain the level of CDP-choline, and consequently the rate of phosphatidylcholine biosynthesis, cardiac cytidylyltransferase activity was increased. However, it was not clear if the same compensatory mechanism would occur when the cardiac CTP level was decreased rapidly. In this study, hypoxia of the hamster heart was produced by perfusion with buffer saturated with 95% N2. The heart was pulse-labelled with radioactive choline and then chased with non-radioactive choline for various periods under hypoxic conditions. There was a severe decrease in ATP and CTP levels within 60 min of hypoxic perfusion, with a corresponding fall in the rate of phosphatidylcholine biosynthesis. Analysis of the choline-containing metabolites revealed that the lowered ATP level did not affect the phosphorylation of choline to phosphocholine, but the lower CTP level resulted in the decreased conversion of phosphocholine to CDP-choline. Determination of enzyme activities revealed that hypoxic treatment resulted in the enhanced translocation of cytidylyltransferase from the cytosolic to the microsomal form. This enhanced translocation was probably caused by the accumulation of fatty acids in the heart during hypoxia. We postulate that the enhancement of translocation of the cytidylyltransferase to the microsomal form (a more active form) is a mechanism by which the heart can compensate for the decrease in CTP level during hypoxia in order to maintain phosphatidylcholine biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号