首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
产甘油假丝酵母(Candida glycerinogenes)是工业甘油生产菌株,具有多重高抗逆、生长迅速、糖代谢高效等优点,是优良的工业宿主菌株.高渗甘油(high osmolarity glycerol, HOG)应答途径是真核细胞应答高渗透压胁迫的关键响应机制.本文从产甘油酵母HOG途径的生物信息学分析、MAP激酶Hog1对细胞表型、甘油转运和合成、氨基酸的合成与转运调控进行阐述,为进一步理解该酵母的HOG应答途径和抗逆机制奠定了基础.  相似文献   

2.
镉是一种严重的环境污染物,对人体具有致癌性,能蓄积在生物体内影响机体的生长、发育和生殖。有丝分裂原蛋白激酶(Mitogen-activated protein kinase,MAPK)在调节细胞存活、增殖和分化中是重要的信号分子,并能够被镉胁迫激活。酿酒酵母中2个MAPK信号传导途径,高渗透压甘油(High Osmolarity Glycerol,HOG)途径和细胞壁完整性(Cell Wall Integrity,CWI)途径都参与Cd2+胁迫下的细胞应答。为了进一步研究这两条途径在调控Cd2+胁迫方面的相互作用,以HOG途径的蛋白激酶SSK2基因为例,通过合成遗传阵列(Synthetic Genetic Array,SGA)方法,成功构建了SSK2基因与其他52个Cd2+耐受相关基因之间的双基因缺失菌株。为大规模研究Cd2+耐受基因之间在调控镉胁迫方面的遗传学相互作用奠定了基础,也为酿酒酵母的相关研究提供了一个新的遗传学手段。  相似文献   

3.
 高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway,HOG-MAPK)是调控酿酒酵母对外界高渗透压胁迫环境应答的主要途径,促分裂原蛋白激酶Hog1p(MAPK Hog1p)是其中的关键性作用因子.在高渗透压刺激时,MAPK Hog1p接受信号被特异性激活并进入核内,调控相关胁迫应答基因的表达,并介导该时期细胞周期的阻滞,从而增强细胞对外界不利环境的适应能力.对胁迫条件下酿酒酵母中MAPK Hog1p作用机制的进一步研究,有利于更深入地了解哺乳动物体内逆境激发促分裂原蛋白激酶途径的功能和调控机制.  相似文献   

4.
【目的】本研究探讨了HOG1 MAPK在亚砷酸钠诱导酵母细胞凋亡中的作用。【方法】以酵母野生株BY4741及其HOG1突变株(ΔHOG1)为材料,研究了亚砷酸钠对酵母细胞生长、相对存活率和氧化损伤的影响,并采用流式细胞术检测了亚砷酸钠胁迫下酵母细胞凋亡率、ROS水平和线粒体膜电位的变化。【结果】亚砷酸钠可抑制酵母细胞生长,诱导细胞凋亡。在相同处理组中,ΔHOG1对亚砷酸钠更为敏感,表现为细胞存活率降低,凋亡率升高。在亚砷酸钠胁迫过程中,ΔHOG1胞内ROS水平和MDA含量显著高于野生株BY4741,而线粒体膜电位显著低于野生株。【结论】HOG1 MAPK可能通过影响胞内ROS水平和线粒体膜电位的变化调控亚砷酸钠诱导的酵母细胞凋亡。  相似文献   

5.
真菌为了适应在生长侵染食品、饲料等农产品的过程中所面临的各种环境胁迫的考验,包括热胁迫、氧化胁迫、渗透压胁迫、紫外胁迫等,进化出一套高渗透性甘油促分裂原活化蛋白激酶(high osmolarity glycerol mitogen-activated protein kinase,HOG-MAPK)途径。该途径对真菌的生长发育、真菌毒素的产生和致病性都具有重要影响。HOG-MAPK途径共有两个分支,其中SLN1分支相比另一分支(SHO1分支)具有较为敏感的渗透压胁迫感应能力,能在高渗压和高盐浓度下进行渗透压胁迫反应。SHO1分支参与多种信号感应传导,比如氧化胁迫、热胁迫等。本文综述了真菌HOG-MAPK途径中关键基因sln1、sho1、ste11、ssk2、pbs2和hog1在应对渗透压胁迫、氧化胁迫等不同环境胁迫时所发挥的功能,说明HOG-MAPK途径可以响应多种环境信号,并参与调控黄曲霉、赭曲霉等致病真菌的生长和黄曲霉毒素(aflatoxin)、赭曲霉毒素(ochratoxin)等真菌毒素的产生。在不同环境胁迫下,HOG-MAPK途径对真菌毒素调控机制的研究可为食品和饲料等农产品真菌毒素的防控提供理论基础和指导方向。  相似文献   

6.
酵母甘油代谢与调控的信息主要来自于酿酒酵母和酿酒酵母细胞对高渗应答的研究。本文综述了酵母细胞非协迫条件下的甘油合成与分解代谢特征;甘油在酵母细胞渗透压调节过程中的作用与酵母耐高渗机理;增强甘油合成的外环境及其甘油合成的途径工程;以及酵母感受胞外高渗信息及控制在高渗协迫条件下甘油合成的高渗甘油应答途径。  相似文献   

7.
酵母细胞渗透压调节与甘油代谢   总被引:4,自引:0,他引:4  
酵母甘油代谢与调控的信息主要来自于酿酒酵母和酿酒酵母细胞对高渗应答的研究。本文综述了酵母细胞非胁迫条件下的甘油合成与分解代谢特征;甘油在酵母细胞渗透压调节过程中的作用与酵母耐高渗机理;增强甘油合成的外环境及其甘油合成的途径工程;以及酵母感受上高渗信息及控制在高渗协迫条件下甘油合成的高渗甘油应答途径。  相似文献   

8.
酵母细胞甘油代谢与生理功能研究进展   总被引:1,自引:0,他引:1  
甘油是酵母细胞生长代谢过程中常见的多元醇物质。尽管甘油的结构简单,代谢途径并不复杂,但是其在细胞内的生理功能十分重要。甘油代谢过程主要参与细胞的高渗透压生理调节和厌氧条件下的胞内氧化还原平衡调节。近年来许多学者在酵母细胞的甘油代谢及生理功能方面开展了深入的研究。在扼要介绍甘油生理代谢的基础上,重点阐述甘油代谢参与细胞高渗压甘油应答信号途径和氧化还原平衡调节的生理机制,同时就酵母细胞甘油合成的代谢工程进行归纳和评述。  相似文献   

9.
高渗透压胁迫是降低生物法制备丁二酸生产效率的关键因素之一。为提高丁二酸生产菌株对高渗透压胁迫的耐受性能,本研究考察了外源引入全局调控蛋白IrrE提高大肠杆菌耐高渗透压胁迫性能的可行性。试验结果表明,在不同浓度Na+胁迫下,重组菌生长和发酵性能明显提升。在5 L罐发酵中,重组菌最大细胞干重、糖耗和丁二酸产量比对照菌分别提高了15.6%、22%和23%,表明引入IrrE蛋白可提高菌株对高渗透压胁迫的耐受能力。进一步比较重组菌和对照菌胞内相容性物质海藻糖和甘油的浓度后发现,重组菌胞内海藻糖和甘油浓度明显提高,其最大积累量分别是对照菌的1.3和3.8倍,推测IrrE可通过增加胞内相容性物质的积累提高菌株对高渗透压胁迫的耐受性。  相似文献   

10.
渗透压反应元件结合蛋白(OREBP)是Rel家族的最新成员,是迄今为止唯一已知的哺乳动物细胞渗透压反应调节因子。它最初是作为一种促进渗透压保护基因表达的蛋白在肾髓质细胞中被发现的。最近研究表明,它在胚胎发育、炎症反应、肌生成、HIV复制以及肿瘤细胞的增殖转移等过程中也发挥了十分重要的作用。然而有关高渗环境下OREBP调控机制的认识还很不完整。许多因素参与了OREBP的调控,这些因素都是高渗环境下激活OREBP所必需的,但又都不能独立完成对OREBP的调控。本文对上述因素在高渗环境下OREBP调控中的作用以及它们之间的相互关系进行了综述。  相似文献   

11.
The Saccharomyces cerevisiae high osmolarity glycerol (HOG) mitogen-activated protein kinase pathway is required for osmoadaptation and contains two branches that activate a mitogen-activated protein kinase (Hog1) via a mitogen-activated protein kinase kinase (Pbs2). We have characterized the roles of common pathway components (Hog1 and Pbs2) and components in the two upstream branches (Ste11, Sho1, and Ssk1) in response to elevated osmolarity by using whole-genome expression profiling. Several new features of the HOG pathway were revealed. First, Hog1 functions during gene induction and repression, cross talk inhibition, and in governing the regulatory period. Second, the phenotypes of pbs2 and hog1 mutants are identical, indicating that the sole role of Pbs2 is to activate Hog1. Third, the existence of genes whose induction is dependent on Hog1 and Pbs2 but not on Ste11 and Ssk1 suggests that there are additional inputs into Pbs2 under our inducing conditions. Fourth, the two upstream pathway branches are not redundant: the Sln1-Ssk1 branch has a much more prominent role than the Sho1-Ste11 branch for activation of Pbs2 by modest osmolarity. Finally, the general stress response pathway and both branches of the HOG pathway all function at high osmolarity. These studies demonstrate that cells respond to increased osmolarity by using different signal transduction machinery under different conditions.  相似文献   

12.
Regulation of the osmoregulatory HOG MAPK cascade in yeast   总被引:16,自引:0,他引:16  
The budding yeast Saccharomyces cerevisiae has at least five signal pathways containing a MAP kinase (MAPK) cascade. The high osmolarity glycerol (HOG) MAPK pathway is essential for yeast survival in high osmolarity environment. This mini-review surveys recent developments in regulation of the HOG pathway with specific emphasis on the roles of protein phosphatases and protein subcellular localization. The Hog1 MAPK in the HOG pathway is negatively regulated jointly by the protein tyrosine phosphatases Ptp2/Ptp3 and the type 2 protein phosphatases Ptc1/Ptc2/Ptc3. Specificities of these phosphatases are determined by docking interactions as well as their cellular localizations. The subcellular localizations of the osmosensors (Sln1 and Sho1), kinases (Pbs2, Hog1), and phosphatases in the HOG pathway are intricately regulated to achieve their specific functions.  相似文献   

13.
When confronted with a marked increase in external osmolarity, budding yeast (Saccharomyces cerevisiae) cells utilize a conserved mitogen-activated protein kinase (MAPK) signaling cascade (the high-osmolarity glycerol or HOG pathway) to elicit cellular responses necessary to permit continued growth. One input that stimulates the HOG pathway requires the integral membrane protein and putative osmosensor Sho1, which recruits and enables activation of the MAPK kinase kinase Ste11. In mutants that lack the downstream MAPK kinase (pbs2Delta) or the MAPK (hog1Delta) of the HOG pathway, Ste11 activated by hyperosmotic stress is able to inappropriately stimulate the pheromone response pathway. This loss of signaling specificity is known as cross talk. To determine whether it is the Hog1 polypeptide per se or its kinase activity that is necessary to prevent cross talk, we constructed a fully functional analog-sensitive allele of HOG1 to permit acute inhibition of this enzyme without other detectable perturbations of the cell. We found that the catalytic activity of Hog1 is required continuously to prevent cross talk between the HOG pathway and both the pheromone response and invasive growth pathways. Moreover, contrary to previous reports, we found that the kinase activity of Hog1 is necessary for its stress-induced nuclear import. Finally, our results demonstrate a role for active Hog1 in maintaining signaling specificity under conditions of persistently high external osmolarity.  相似文献   

14.
15.
16.
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner.  相似文献   

17.
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.  相似文献   

18.
Because Ca(2+) signaling of budding yeast, through the activation of calcineurin and the Mpk1/Slt2 mitogen-activated protein kinase cascade, performs redundant function(s) in the events essential for growth, the simultaneous deletion of both these pathways (Delta cnb1 Delta mpk1) leads to lethality. A PTC4 cDNA that encodes a protein phosphatase belonging to the PP2C family was obtained as a high dosage suppressor of the lethality of Delta cnb1 Delta mpk1 strain. Overexpression of PTC4 led to a decrease in the high osmolarity-induced Hog1 phosphorylation, and HOG1 deletion remarkably suppressed the synthetic lethality, indicating an antagonistic role of the high osmolarity glycerol (HOG) pathway and the Ca(2+) signaling pathway in growth regulation. The calcineurin-Crz1 pathway was required for the down-regulation of the HOG pathway. Analysis of the time course of actin polarization, bud formation, and the onset of mitosis in synchronous cell cultures demonstrated that calcineurin negatively regulates actin polarization at the bud site, whereas the HOG pathway positively regulates bud formation at a later step after actin has polarized.  相似文献   

19.
Cdc37p, the p50 homolog of Saccharomyces cerevisiae, is an Hsp90 cochaperone involved in the targeting of protein kinases to Hsp90. Here we report a role for Cdc37p in osmoadaptive signalling in this yeast. The osmosensitive phenotype that is displayed by the cdc37-34 mutant strain appears not to be the consequence of deficient signalling through the high osmolarity glycerol (HOG) MAP kinase pathway. Rather, Cdc37p appears to play a role in the filamentous growth (FG) pathway, which mediates adaptation to high osmolarity parallel to the HOG pathway. The osmosensitive phenotype of the cdc37-34 mutant strain is aggravated upon the deletion of the HOG gene. We report that the hyper-osmosensitive phenotype of the cdc37-34, hog1 mutant correlates to a reduced of activity of the FG pathway. We utilized this phenotype to isolate suppressor genes such as KSS1 that encodes a MAP kinase that functions in the FG pathway. We report that Kss1p interacts physically with Cdc37p. Like Kss1p, the second suppressor that we isolated, Dse1p, is involved in cell wall biogenesis or maintenance, suggesting that Cdc37p controls osmoadapation by regulating mitogen-activated protein kinase signalling aimed at adaptive changes in cell wall organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号