首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The activity of 20α-hydroxy steroid dehydrogenase in rat ovarian corpora lutea increased at least 50-fold between 2 days before and 2 days after parturition, and then fell gradually during lactation. The activity of 3β-hydroxy Δ5-steroid dehydrogenase decreased by 50% at parturition but remained constant at other times. 2. The 20α-hydroxypregn-4-en-3-one/progesterone concentration ratio in the ovary fell tenfold between 1 day before and 1 day after parturition, in contrast with the increase of the ratio for these steroids in plasma. 3. Pregnenolone was metabolized in intact cells or cell-free systems either to pregn-5-ene-3β,20α-diol and then to 20α-hydroxypregn-4-en-3-one by 20α-hydroxy steroid dehydrogenase and 3β-hydroxy Δ5-steroid dehydrogenase respectively, or directly to progesterone by the latter enzyme. The relative activities of these pathways appeared to reflect the relative amounts of the two enzymes and the concentrations of their respective coenzymes NADPH and NAD+. 4. From these and other observations it was concluded that the cessation of progesterone secretion, which precedes parturition and lactogenesis at the end of pregnancy, is partly due to the redirected metabolism of pregnenolone away from progesterone and towards 20α-hydroxypregn-4-en-3-one as the secreted end product. This is primarily the consequence of the sharp increase in the activity of 20α-hydroxy steroid dehydrogenase. This mechanism is super-imposed on the already declining rate of net Δ4-steroid release by the ovary. 5. A relationship of these pathways to subcellular compartments of luteal cells is proposed.  相似文献   

2.
Two adenosine diphosphoglucose: α-1,4-glucan α-4-glucosyl-transferases were extracted from kernels of waxy maize harvested 22 days after pollination and separated by gradient elution from a diethylaminoethyl-cellulose column. Both fractions could utilize amylopectin, amylose, glycogen, maltotriose and maltose as primers. The rate of glucose transfer from adenosine diphosphoglucose to rabbit liver glycogen of fraction II was 78% of the rate of glucose transfer to amylopectin, but with fraction I the rate of transfer of glucose to rabbit liver glycogen was 380% of that observed to amylopectin. Glucan synthesis in the absence of added primer was found in fraction I in the presence of 0.5 m sodium citrate and bovine serum albumin. The unprimed product was a methanol-precipitable glucan with principally α-1,4 linkages and some α-1,6 linkages, and its iodine spectrum was similar to that of amylopectin.  相似文献   

3.
p24 family proteins are evolutionarily conserved transmembrane proteins involved in the early secretory pathway. Saccharomyces cerevisiae has 8 known p24 proteins that are classified into four subfamilies (p24α, -β, -γ, and -δ). Emp24 and Erv25 are the sole members of p24β and -δ, respectively, and deletion of either destabilizes the remaining p24 proteins, resulting in p24 null phenotype (p24Δ). We studied genetic and physical interactions of p24α (Erp1, -5, and -6) and γ (Erp2, -3, and -4). Deletion of the major p24α (Erp1) partially inhibited p24 activity as reported previously. A second mutation in either Erp5 or Erp6 aggravated the erp1Δ phenotype, and the triple mutation gave a full p24Δ phenotype. Similar genetic interactions were observed among the major p24γ (Erp2) and the other two γ members. All the p24α/γ isoforms interacted with both p24β and -δ. Interaction between p24β and -δ was isoform-selective, and five major α/γ pairs were detected. These results suggest that the yeast p24 proteins form functionally redundant αβγδ complexes. We also identified Rrt6 as a novel p24δ isoform. Rrt6 shows only limited sequence identity (∼15%) to known p24 proteins but was found to have structural properties characteristic of p24. Rrt6 was induced when cells were grown on glycerol and form an additional αβγδ complex with Erp3, Erp5, and Emp24. This complex was mainly localized to the Golgi, whereas the p24 complex containing Erv25, instead of Rrt6 but otherwise with the same isoform composition, was found mostly in the ER.  相似文献   

4.
trans-Sialidase (TS) enzymes catalyze the transfer of sialyl (Sia) residues from Sia(α2-3)Gal(β1-x)-glycans (sialo-glycans) to Gal(β1-x)-glycans (asialo-glycans). Aiming to apply this concept for the sialylation of linear and branched (Gal)nGlc oligosaccharide mixtures (GOS) using bovine κ-casein-derived glycomacropeptide (GMP) as the sialic acid donor, a kinetic study has been carried out with three components of GOS, i.e., 3′-galactosyl-lactose (β3′-GL), 4′-galactosyl-lactose (β4′-GL), and 6′-galactosyl-lactose (β6′-GL). This prebiotic GOS is prepared from lactose by incubation with suitable β-galactosidases, whereas GMP is a side-stream product of the dairy industry. The trans-sialidase from Trypanosoma cruzi (TcTS) was expressed in Escherichia coli and purified. Its temperature and pH optima were determined to be 25°C and pH 5.0, respectively. GMP [sialic acid content, 3.6% (wt/wt); N-acetylneuraminic acid (Neu5Ac), >99%; (α2-3)-linked Neu5Ac, 59%] was found to be an efficient sialyl donor, and up to 95% of the (α2-3)-linked Neu5Ac could be transferred to lactose when a 10-fold excess of this acceptor substrate was used. The products of the TcTS-catalyzed sialylation of β3′-GL, β4′-GL, and β6′-GL, using GMP as the sialic acid donor, were purified, and their structures were elucidated by nuclear magnetic resonance spectroscopy. Monosialylated β3′-GL and β4′-GL contained Neu5Ac connected to the terminal Gal residue; however, in the case of β6′-GL, TcTS was shown to sialylate the 3 position of both the internal and terminal Gal moieties, yielding two different monosialylated products and a disialylated structure. Kinetic analyses showed that TcTS had higher affinity for the GL substrates than lactose, while the Vmax and kcat values were higher in the case of lactose.  相似文献   

5.
Sialyl oligosaccharides were separated from two samples of Japanese black bear milk by extraction with chloroform/methanol, gel filtration on Bio Gel P-2, ion exchange chromatography on DEAE-Sephadex A-50 and high-performance liquid chromatography (HPLC) on a TSK gel Amido-80 column. They were characterized by 1H-NMR spectroscopy. The structures of four sialyl oligosaccharides separated from the milk were the following:
Neu5Ac(α2-3)Gal(β1-4)Glc
Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3) Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6) Gal(β1-4)Glc
Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3) Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6) Gal(β1-4)Glc
Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc
Keywords: Japanese black bear milk; Milk oligosaccharides; Sialyl milk oligosaccharides; B antigen; α-Gal epitope; Ursidae; Ursus thibetanus japonicus; Japanese black bear  相似文献   

6.
The Ascomycete Cordyceps militaris, an entomopathogenic fungus, is one of the most important traditional Chinese medicines. Studies related to its pharmacological properties suggest that this mushroom can exert interesting biological activities. Aqueous (CW and HW) and alkaline (K5) extracts containing polysaccharides were prepared from this mushroom, and a β-D-glucan was purified. This polymer was analysed by GC-MS and NMR spectrometry, showing a linear chain composed of β-D-Glcp (1→3)-linked. The six main signals in the 13C-NMR spectrum were assigned by comparison to reported data. The aqueous (CW, HW) extracts stimulated the expression of IL-1β, TNF-α, and COX-2 by THP-1 macrophages, while the alkaline (K5) extract did not show any effect. However, when the extracts were added to the cells in the presence of LPS, K5 showed the highest inhibition of the pro-inflammatory genes expression. This inhibitory effect was also observed for the purified β-(1→3)-D-glucan, that seems to be the most potent anti-inflammatory compound present in the polysaccharide extracts of C. militaris. In vivo, β-(1→3)-D-glucan also inhibited significantly the inflammatory phase of formalin-induced nociceptive response, and, in addition, it reduced the migration of total leukocytes but not the neutrophils induced by LPS. In conclusion, this study clearly demonstrates the anti-inflammatory effect of β-(1→3)-D-glucan.  相似文献   

7.
The extracellular domain of the nicotinic acetylcholine receptor isoforms formed by three α4 and two β2 subunits ((α4)3(β2)2 nAChR) harbors two high-affinity “canonical” acetylcholine (ACh)-binding sites located in the two α4:β2 intersubunit interfaces and a low-affinity “noncanonical” ACh-binding site located in the α4:α4 intersubunit interface. In this study, we used ACh, cytisine, and nicotine (which bind at both the α4:α4 and α4:β2 interfaces), TC-2559 (which binds at the α4:β2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI, which binds at the α4:α4 but not at the α4:β2 interface), to investigate the binding and gating properties of CMPI at the α4:α4 interface. We recorded whole-cell currents from Xenopus laevis oocytes expressing (α4)3(β2)2 nAChR in response to applications of these ligands, alone or in combination. The electrophysiological data were analyzed in the framework of a modified Monod–Wyman–Changeux allosteric activation model. We show that CMPI is a high-affinity, high-efficacy agonist at the α4:α4 binding site and that its weak direct activating effect is accounted for by its inability to productively interact with the α4:β2 sites. The data presented here enhance our understanding of the functional contributions of ligand binding at the α4:α4 subunit interface to (α4)3(β2)2 nAChR-channel gating. These findings support the potential use of α4:α4 specific ligands to increase the efficacy of the neurotransmitter ACh in conditions associated with decline in nAChRs activity in the brain.  相似文献   

8.
To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.  相似文献   

9.
1. An α-(1→6)-glucosidase has been separated from cell extracts of Streptococcus mitis. The enzyme was freed from transglucosylase by adsorption of the latter on retrograded amylose. 2. The enzyme was detected in five of the six strains of S. mitis that were studied; α-(1→6)-glucosidase was not found in strain RB1633, a strain that did not store polysaccharide. 3. The glucosidase could act on compounds in which α-glucose is joined through an α-(1→6)-bond to either a maltosaccharide or an isomaltosaccharide. 62-α-Glucosylmaltose (panose) and 63-α-glucosylmaltotriose were hydrolysed more rapidly and isomaltodextrins more slowly than isomaltose. 4. Transferring activity towards isomaltose and panose was appreciable when the concentration of substrate was 2% or higher. 5. The enzyme had no action on α-(1→4)-glucosidic linkages. 6-α-Maltodextrinylglucoses were hydrolysed only after transglucosylase action had attenuated them to isomaltose.  相似文献   

10.
4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure.  相似文献   

11.
Tubulin Isotypes in Rye Roots Are Altered during Cold Acclimation   总被引:7,自引:4,他引:3       下载免费PDF全文
The cold stability of cortical microtubules in root-tip cells of winter rye (Secale cereale L. cv Puma) is altered by growth temperature (GP Kerr, JV Carter [1990] Plant Physiol 93:77-82). One hypothesis for the basis of this alteration is that different tubulin isotypes are present at different growth temperatures, and that the cold stability of microtubules is affected by these isotypic differences. We have explored the first part of this hypothesis by comparing protein extracts from roots of seedlings grown for 2 days at 22°C (nonacclimated) or for an additional 2 or 4 days at 4°C (cold-acclimated). Immunoblots of two-dimensional polyacrylamide gels were probed with monoclonal antibodies to α- and β-tubulin. At least six α- and seven β-tubulins were present in the extracts from both the nonacclimated and cold-acclimated roots. Changes in electrophoretic mobility and isotype number of both α- and β-tubulin were observed after only 2 days at 4°C. Further changes in tubulin were observed after 4 days at 4°C. Changes in α-tubulin were more pronounced than those in β-tubulin.  相似文献   

12.

Background

Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear.

Results

After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by the strain. At the same time, the result of ECM formation promoted by the strain, was similar to the osteoblastic differentiation.

Conclusion

Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0014-y) contains supplementary material, which is available to authorized users.  相似文献   

13.
The white-rot basidiomycete Phanerochaete chrysosporium metabolized 3-(4′-ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)propionic acid (V) in low-nitrogen, stationary cultures, conditions under which ligninolytic activity is expressed. The ability of several fungal mutant strains to degrade V reflected their ability to degrade [14C]lignin to 14CO2. 1-(4′-Ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)-2- hydroxyethane (VII), anisyl alcohol, and 4-ethoxy-3-methoxybenzyl alcohol were isolated as metabolic products, indicating an initial oxidative decarboxylation of V, followed by α, β cleavage of the intermediate (VII). Exogenously added VII was rapidly converted to anisyl alcohol and 4-ethoxy-3-methoxybenzyl alcohol. When the degradation of V was carried out under 18O2, 18O was incorporated into the β position of the diarylethane product (VII), indicating that the reaction is oxygenative.  相似文献   

14.
When Chlorella sorokiniana was cultured in the presence of 1 mg/1 triparanol succinate, there was a 42% reduction in total sterol concentration. Algal biomass was reduced by approximately the same amount. In addition to the cycloartenol, cyclolaudenol, 24-methyl-pollinastanol, ergosta-5, 7-dien-3β-ol, and ergosterol that occur in control culture, pollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol, 5α-ergosta-8(9), 22-dien-3β-ol, 5α-ergosta-8, 14-dien-3β-ol, 5α-ergost-8(9)-3n-3β-ol, 5α-ergost-8(14)-en-3β-ol, 5α-ergosta-7, 22-dien-3β-ol, and 5α-ergost-7-en-3β-ol were isolated and identified from triparanol succinate-treated cells. A biosynthetic pathway for sterol biosynthesis in this organism is postulated based on all the sterols that were isolated and identified in triparanol-treated cultures of C. sorokiniana. Cyclolaudenol appears to be the product of the first alkylation at C-24 in this organism rather than the more common 24-methylene cycloartanol. Since 24-methylene sterols are needed for the second alkylation reaction, this would explain the absence of C-29 sterols in C. sorokiniana. Four of the sterols identified in C. sorokiniana are reported for the first time in a living organism. They are: 24-methyl pollinastanol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol and 5α-ergost-8(14)-en-3β-ol.  相似文献   

15.
The herbicide Sandoz 6706 (4-chloro-5-(dimethylamino)-2-α,α,α, (trifluoro-m-tolyl)-3(2H)-pyridazinone), when applied as a preplant soil treatment at a concentration of 0.05 μg/g reduced the content of β-carotene and chlorophylls in 21-day-old wheat seedlings (Triticum aestivum L.) by 55% and 29%, respectively, without affecting the fresh or dry matter of the seedlings. At 0.8 μg/g, the herbicide reduced the content of β-carotene and chlorophyll by as much as 98%, while the fresh weight of the albino seedlings was reduced by only 24%. The effect of the herbicide on chlorophyll b was much stronger than on chlorophyll a. Time course studies of pigment synthesis in Sandoz 6706-treated seedlings showed that chlorophyll, β-carotene, cyclic xanthophylls, phytoene, phytofluene, and ζ-carotene were accumulating during the first 7 days after sowing. Later on, there was a sharp decline in the content of chlorophyll and β-carotene and a gradual reduction in the content of phytofluene, ζ-carotene, and cyclic xanthophylls; the content of phytoene remained essentially unchanged. Coinciding with the drop in content of β-carotene and chlorophyll, there was a remarkable increase in the content of epoxy phytoene. It is suggested that Sandoz 6706 might act as an inhibitor of the cyclization reaction in the biosynthetic pathway of carotenoids and that other effects, such as the bleaching of chlorophyll, are a consequence of this inhibition.  相似文献   

16.
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the α-(1→4) glucosidic type (~70%). This reuteran also contains α-(1→6)- linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing α-(1→4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of α-(1→4) linkages reported to date.  相似文献   

17.
1. A 200 mg. portion of corticosterone was ingested by a healthy man and the urine collected. Part of the urine was treated with the gastric juice of Helix pomatia and extracted with ethyl acetate, and the extract fractionated with Girard T. Paper-chromatographic separation of the non-ketonic fraction in the Bush (1952) system B5 revealed the presence of two unknown polar components. 2. The unknown compounds did not possess a reducing (blue tetrazolium) or a reducible (potassium borohydride) grouping. Both contained a terminal α-glycollic fragment as shown by the formation of formaldehyde, and of a non-volatile aldehyde on oxidation with sodium bismuthate. 3. Unknown compound (I) had paper-chromatographic mobilities identical with those of 5β-pregnane-3α,11β,20β,21-tetraol. The oxidation product of compound (I) had a retention time (gas–liquid chromatography) on an SE30 column identical with that of 3α,11β-dihydroxy-21-nor-5β-pregnan-20-al. The retention times of various derivatives agreed with those produced in an identical manner on the standard, and accordingly compound (I) is formulated as 5β-pregnane-3α,11β,20ξ,21-tetraol. 4. Unknown compound (II) had a higher RF than compound (I), and its oxidation product had a longer retention time than that of compound (I). From the group effects observed in paper and gas–liquid chromatography, compound (II) is tentatively formulated as 5α-pregnane-3α,11β,20ξ,21-tetraol. The 5α/5β ratio found was about 2·0.  相似文献   

18.
A number of case-control studies have been conducted to clarify the association between ApoE polymorphisms and myocardial infarction (MI); however, the results are inconsistent. This meta-analysis was performed to clarify this issue using all the available evidence. Searching in PubMed retrieved all eligible articles. A total of 33 studies were included in this meta-analysis, including 18752 MI cases and 18963 controls. The pooled analysis based on all included studies showed that the MI patients had a decreased frequency of the ε2 allele (OR = 0.78, 95% CI = 0.70–0.87) and an increased frequency of the ε4 allele (OR = 1.15, 95% CI = 1.10–1.20); The results also showed a decreased susceptibility of MI in the ε2ε3 vs. ε3ε3 analysis (OR = 0.79, 95% CI = 0.68–0.90) and in the ε2 vs. ε3 analysis (OR = 0.78, 95% CI = 0.69–0.89), an increased susceptibility of MI in the ε3ε4 vs. ε3ε3 analysis (OR = 1.26, 95% CI = 1.12–1.41), in the ε4 vs. ε3 analysis (OR = 1.22, 95% CI = 1.12–1.32) and in the ε4ε4 vs. ε3ε3 analysis (OR = 1.59, 95% CI = 1.15–2.19). However, there were no significant associations among polymorphisms and MI for the following genetic models: frequency of the ε3 allele (OR = 0.99, 95% CI = 0.96–1.02); ε2ε2 vs. ε3ε3 analysis (OR = 0.73, 95% CI = 0.40–1.32); or ε2ε4 vs. ε3ε3 analysis (OR = 1.10, 95% CI = 0.99–1.21). Our results suggested that the ε4 allele of ApoE is a risk factor for the development of MI and the ε2 allele of ApoE is a protective factor in the development of MI.  相似文献   

19.
Rat mammary tumours induced by 7,12-dimethylbenz[a]anthracene can undergo repeated growth and regression during successive pregnancies. In a 10-day period after birth about half of the tumours regressed 50% or more. The concentrations of the lysosomal enzymes increased in regressing mammary tumours to the following multiples of the initial values: β-glucuronidase, 7·7; β-galactosidase, 3·9; cathepsin, 2·9; acid ribonuclease, 2·1; arylsulphatase A, 1·5; acid phosphatase, 1·4. In contrast, several non-lysosomal enzymes failed to increase. Activities in the post-partum uterus increased to the following multiples of the initial values: β-glucuronidase, 5·8; cathepsin, 5·5; acid ribonuclease, 4·3; β-galactosidase, 2·2; acid phosphatase, 1·8. Arylsulphatase A in the post-partum uterus decreased significantly, suggesting a non-lysosomal distribution or a special function related to pregnancy. No other significant changes were observed in the lysosomal or non-lysosomal enzymes in the hormone-independent liver or hormone-dependent normal mammary gland. The ratio of free to bound arylsulphatase A and acid ribonuclease decreased slightly 1–3 days after birth because of problems in homogenizing the tumours. At days 4–8, however, there was a dramatic increase in the ratio of the free to bound activities. The results can be explained in terms of the lysosomal theory of intracellular digestion.  相似文献   

20.
Laminin trimers composed of α, β, and γ chains are major components of basal laminae (BLs) throughout the body. To date, three α chains (α1–3) have been shown to assemble into at least seven heterotrimers (called laminins 1–7). Genes encoding two additional α chains (α4 and α5) have been cloned, but little is known about their expression, and their protein products have not been identified. Here we generated antisera to recombinant α4 and α5 and used them to identify authentic proteins in tissue extracts. Immunoprecipitation and immunoblotting showed that α4 and α5 assemble into four novel laminin heterotrimers (laminins 8–11: α4β1γ1, α4β2γ1, α5β1γ1, and α5β2γ1, respectively). Using a panel of nucleotide and antibody probes, we surveyed the expression of α1-5 in murine tissues. All five chains were expressed in both embryos and adults, but each was distributed in a distinct pattern at both RNA and protein levels. Overall, α4 and α5 exhibited the broadest patterns of expression, while expression of α1 was the most restricted. Immunohistochemical analysis of kidney, lung, and heart showed that the α chains were confined to extracellular matrix and, with few exceptions, to BLs. All developing and adult BLs examined contained at least one α chain, all α chains were present in multiple BLs, and some BLs contained two or three α chains. Detailed analysis of developing kidney revealed that some individual BLs, including those of the tubule and glomerulus, changed in laminin chain composition as they matured, expressing up to three different α chains and two different β chains in an elaborate and dynamic progression. Interspecific backcross mapping of the five α chain genes revealed that they are distributed on four mouse chromosomes. Finally, we identified a novel full-length α3 isoform encoded by the Lama3 gene, which was previously believed to encode only truncated chains. Together, these results reveal remarkable diversity in BL composition and complexity in BL development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号