首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The TIM22 protein import pathway of the yeast mitochondrion contains several components, including a family of five proteins (Tim8p, -9p, -10p, -12p, and -13p [Tim, for translocase of inner membrane]) that are located in the intermembrane space and are 25% identical. Tim9p and Tim10p have dual roles in mediating the import of inner membrane proteins. Like the Tim8p-Tim13p complex, the Tim9p-Tim10p complex functions as a putative chaperone to guide hydrophobic precursors across the intermembrane space. Like membrane-associated Tim12p, they are members of the Tim18p-Tim22p-Tim54p membrane complex that mediates precursor insertion into the membrane. To understand the role of this family in protein import, we have used a genetic approach to manipulate the complement of the small Tim proteins. A strain has been constructed that lacks the 70-kDa soluble Tim8p-Tim13p and Tim9p-Tim10p complexes in the intermembrane space. Instead, a functional version of Tim9p (Tim9(S67C)p), identified as a second-site suppressor of a conditional tim10 mutant, maintains viability. Characterization of this strain revealed that Tim9(S67C)p and Tim10p were tightly associated with the inner membrane, the soluble 70-kDa Tim8p-Tim13p and Tim9p-Tim10p complexes were not detectable, and the rate of protein import into isolated mitochondria proceeded at a slower rate. An arrested translocation intermediate bound to Tim9(S67C)p was located in the intermembrane space, associated with the inner membrane. We suggest that the 70-kDa complexes facilitate import, similar to the outer membrane receptors of the TOM (hetero-oligomeric translocase of the outer membrane) complex, and the essential role of Tim9p and Tim10p may be to mediate protein insertion in the inner membrane with the TIM22 complex.  相似文献   

2.
Earlier work on the protein import system of yeast mitochondria has identified two soluble 70 kDa protein complexes in the intermembrane space. One complex contains the essential proteins Tim9p and Tim10p and mediates transport of cytosolically-made metabolite carrier proteins from the outer to the inner membrane. The other complex contains the non-essential proteins Tim8p and Tim13p as well as loosely associated Tim9p; its function was unclear, but it interacted structurally or functionally with the Tim9p-Tim10p complex. We now show that the two 70 kDa complexes each mediate the import of a different subset of integral inner membrane proteins and that they can transfer these proteins to one of three different membrane insertion sites: the TIM22 complex, the TIM23 complex or an as yet uncharacterized insertion site. Yeast mitochondria thus use multiple pathways for escorting hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

3.
The small Tim proteins in the mitochondrial intermembrane space participate in the TIM22 import pathway for assembly of the inner membrane. Assembly of the small TIM complexes requires the conserved "twin CX3C" motif that forms juxtapositional intramolecular disulfide bonds. Here we identify a new intermembrane space protein, Hot13p, as the first component of a pathway that mediates assembly of the small TIM complexes. The small Tim proteins require Hot13p for assembly into a 70-kDa complex in the intermembrane space. Once assembled the small TIM complexes escort hydrophobic inner membrane proteins en route to the TIM22 complex. The mechanism by which the small Tim proteins bind and release substrate is not understood, and we investigated the affect of oxidant/reductant treatment on the TIM22 import pathway. With in organello import studies, oxidizing agents arrest the ADP/ATP carrier (AAC) bound to the Tim9p-Tim10p complex in the intermembrane space; this productive intermediate can be chased into the inner membrane upon subsequent treatment with reductant. Moreover, AAC import is markedly decreased by oxidant treatment in Deltahot13 mitochondria and improved when Hot13p is overexpressed, suggesting Hot13p may function to remodel the small TIM complexes during import. Together these results suggest that the small TIM complexes have a specialized assembly pathway in the intermembrane space and that the local redox state of the TIM complexes may mediate translocation of inner membrane proteins.  相似文献   

4.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

5.
The mitochondrial intermembrane space contains a family of small Tim proteins that function as essential chaperones for protein import. The soluble Tim9-Tim10 complex transfers hydrophobic precursor proteins through the aqueous intermembrane space to the carrier translocase of the inner membrane (TIM22 complex). Tim12, a peripheral membrane subunit of the TIM22 complex, is thought to recruit a portion of Tim9-Tim10 to the inner membrane. It is not known, however, how Tim12 is assembled. We have identified a new intermediate in the biogenesis pathway of Tim12. A soluble form of Tim12 first assembles with Tim9 and Tim10 to form a Tim12-core complex. Tim12-core then docks onto the membrane-integrated subunits of the TIM22 complex to form the holo-translocase. Thus, the function of Tim12 in linking soluble and membrane-integrated subunits of the import machinery involves a sequential assembly mechanism of the translocase through a soluble intermediate complex of the three essential small Tim proteins.  相似文献   

6.
The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.  相似文献   

7.
The small Tim proteins and the twin Cx3C motif   总被引:6,自引:0,他引:6  
The mitochondrial intermembrane space contains the 'small' Tim (translocase of inner membrane) proteins that are marked by their conserved 'twin Cx(3)C' motif separated by 11-16 residues. Together with the Tim22 complex at the inner membrane, the small Tim proteins form the TIM22 import machinery that mediates the biogenesis of polytopic inner membrane proteins. Upon first investigation, the conserved motif resembles a zinc-finger-like domain, but the spacing between the cysteine residues differs from that a canonical zinc finger. Recent publications present different views about the function of the conserved cysteines: the cysteines form a zinc-finger-like structure to coordinate zinc or, alternatively, they form juxtapositioned disulfide bonds.  相似文献   

8.
Tim9, Tim10a, and Tim10b are members of the family of small Tim proteins located in the intermembrane space of mammalian mitochondria. In yeast, members of this family act along the TIM22 import pathway during import of metabolite carriers and other integral inner membrane proteins. Here, we show that the human small proteins form two distinct hetero-oligomeric complexes. A 70-kDa complex that contains Tim9 and Tim10a and a Tim9-10a-10b that is part of a higher molecular weight assembly of 450 kDa. This distribution among two complexes suggests Tim10b to be the functional homologue of yeast Tim12. Both human complexes are tightly associated with the inner membrane and, compared with yeast, soluble 70-kDa complexes appear to be completely absent in the intermembrane space. Thus, the function of soluble 70-kDa complexes as trans-site receptors for incoming carrier proteins is not conserved from lower to higher eukaryotes. During import, the small Tim complexes directly interact with human adenine nucleotide translocator (ANT) in transit in a metal-dependent manner. For insertion of carrier preproteins into the inner membrane, the human small Tim proteins directly interact with human Tim22, the putative insertion pore of the TIM22 translocase. However, in contrast to yeast, only a small fraction of Tim9-Tim10a-Tim10b complex is in a stable association with Tim22. We conclude that different mechanisms and specific requirements for import and insertion of mammalian carrier preproteins have evolved in higher eukaryotes.  相似文献   

9.
Tim10p, a protein of the yeast mitochondrial intermembrane space, was shown previously to be essential for the import of multispanning carrier proteins from the cytoplasm into the inner membrane. We now identify Tim9p, another essential component of this import pathway. Most of Tim9p is associated with Tim10p in a soluble 70 kDa complex. Tim9p and Tim10p co-purify in successive chromatographic fractionations and co-immunoprecipitated with each other. Tim9p can be cross-linked to a partly translocated carrier protein. A small fraction of Tim9p is bound to the outer face of the inner membrane in a 300 kDa complex whose other subunits include Tim54p, Tim22p, Tim12p and Tim10p. The sequence of Tim9p is 25% identical to that of Tim10p and Tim12p. A Ser67-->Cys67 mutation in Tim9p suppresses the temperature-sensitive growth defect of tim10-1 and tim12-1 mutants. Tim9p is a new subunit of the TIM machinery that guides hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

10.
Import of carrier proteins from the cytoplasm into the mitochondrial inner membrane of yeast is mediated by a distinct system consisting of two soluble 70-kDa protein complexes in the intermembrane space and a 300-kDa complex in the inner membrane, the TIM22 complex. The TIM22 complex contains the peripheral subunits Tim9p, Tim10p, and Tim12p and the integral membrane subunits Tim22p and Tim54p. We identify here an additional subunit, an 18-kDa integral membrane protein termed Tim18p. This protein is made as a 21.9-kDa precursor which is imported into mitochondria and processed to its mature form. When mitochondria are gently solubilized, Tim18p comigrates with the other subunits of the TIM22 complex on nondenaturing gels and is coimmunoprecipitated with Tim54p and Tim12p. Tim18p does not cofractionate with the TIM23 complex upon immunoprecipitation or nondenaturing gel electrophoresis. Deletion of Tim18p decreases the growth rate of yeast cells by a factor of two and is synthetically lethal with temperature-sensitive mutations in Tim9p or Tim10p. It also impairs the import of several precursor proteins into isolated mitochondria, and lowers the apparent mass of the TIM22 complex. We suggest that Tim18p functions in the assembly and stabilization of the TIM22 complex but does not directly participate in protein insertion into the inner membrane.  相似文献   

11.
Tim23p (translocase of the inner membrane) is an essential import component located in the mitochondrial inner membrane. To determine how the Tim23 protein itself is transported into mitochondria, we used chemical cross-linking to identify proteins adjacent to Tim23p during its biogenesis. In the absence of an inner membrane potential, Tim23p is translocated across the mitochondrial outer membrane, but not inserted into the inner membrane. At this intermediate stage, we find that Tim23p forms cross-linked products with two distinct protein complexes of the intermembrane space, Tim8p-Tim13p and Tim9p-Tim10p. Tim9p and Tim10p cross-link to the COOH-terminal domain of the Tim23 protein, which carries all of the targeting signals for Tim23p. Therefore, our results suggest that the Tim9p-Tim10p complex plays a key role in Tim23p import. In contrast, Tim8p and Tim13p cross-link to the hydrophilic NH(2)-terminal segment of Tim23p, which does not carry essential import information and, thus, the role of Tim8p-Tim13p is unclear. Tim23p contains two matrix-facing, positively charged loops that are essential for its insertion into the inner membrane. The positive charges are not required for interaction with the Tim9p-Tim10p complex, but are essential for cross-linking of Tim23p to components of the inner membrane insertion machinery, including Tim54p, Tim22p, and Tim12p.  相似文献   

12.
Tim9, a new component of the TIM22.54 translocase in mitochondria.   总被引:14,自引:3,他引:11       下载免费PDF全文
We have identified Tim9, a new component of the TIM22.54 import machinery, which mediates transport of proteins into the inner membrane of mitochondria. Tim9, an essential protein of Saccharomyces cerevisiae, shares sequence similarity with Tim10 and Tim12. Tim9 is located in the mitochondrial intermembrane space and is organized into two distinct hetero-oligomeric assemblies with Tim10 and Tim12. One complex contains Tim9 and Tim10. The other complex contains Tim9, Tim10 and Tim12 and is tightly associated with Tim22 in the inner membrane. The TIM9.10 complex is more abundant than the TIM9.10.12 complex and mediates partial translocation of mitochondrial carriers proteins across the outer membrane. The TIM9.10.12 complex assists further translocation into the inner membrane in association with TIM22.54.  相似文献   

13.
Import of the ADP/ATP carrier (AAC) into mitochondria requires the soluble TIM10 complex to cross the intermembrane space. We report here that Tim9 and Tim10 purified from Escherichia coli can form a complex of the same size as the endogenous complex from yeast mitochondria. This shows that no other mitochondrial protein is required for the formation of the TIM10 complex. Co-expression of both proteins rendered Tim9 more soluble and allowed purification of the reconstituted complex in a single step. Urea/EDTA treatment of recombinant Tim10 allowed its import into tim10-ts mitochondria that lack endogenous Tim10 and cannot import AAC. In this way, we were able to (i) reconstitute the TIM10 complex in the intermembrane space and (ii) restore import of AAC to almost wild-type levels. The reconstituted TIM10 complex not only facilitated passage of AAC across the outer membrane but also ensured its accurate membrane insertion. We conclude that the TIM10 complex can be formed exclusively from Tim9 and Tim10 and that the reconstituted complex efficiently restores AAC import in a strain lacking the TIM10 complex.  相似文献   

14.
Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.  相似文献   

15.
Tim8 and Tim13 are non-essential, conserved proteins of the mitochondrial intermembrane space, which are organized in a hetero-oligomeric complex. They are structurally related to Tim9 and Tim10, essential components of the import machinery for mitochondrial carrier proteins. Here we show that the TIM8-13 complex interacts with translocation intermediates of Tim23, which are partially translocated across the outer membrane but not with fully imported or assembled Tim23. The TIM8-13 complex binds to the N-terminal or intermediate domain of Tim23. It traps the incoming precursor in the intermembrane space thereby preventing retrograde translocation. The TIM8-13 complex is strictly required for import of Tim23 under conditions when a low membrane potential exists in the mitochondria. The human homologue of Tim8 is encoded by the DDP1 (deafness/dystonia peptide 1) gene, which is associated with the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder leading to deafness. It is demonstrated that import of human Tim23 is dependent on a high membrane potential. A mechanism to explain the pathology of MTS is discussed.  相似文献   

16.
The mitochondrial inner membrane contains two separate translocons: one required for the translocation of matrix-targeted proteins (the Tim23p-Tim17p complex) and one for the insertion of polytopic proteins into the mitochondrial inner membrane (the Tim54p-Tim22p complex). To identify new members of the Tim54p-Tim22p complex, we screened for high-copy suppressors of the temperature-sensitive tim54-1 mutant. We identified a new gene, TIM18, that encodes an integral protein of the inner membrane. The following genetic and biochemical observations suggest that the Tim18 protein is part of the Tim54p-Tim22p complex in the inner membrane: multiple copies of TIM18 suppress the tim54-1 growth defect; the tim18::HIS3 disruption is synthetically lethal with tim54-1; Tim54p and Tim22p can be coimmune precipitated with the Tim18 protein; and Tim18p, along with Tim54p and Tim22p, is detected in an approximately 300-kDa complex after blue native electrophoresis. We propose that Tim18p is a new component of the Tim54p-Tim22p machinery that facilitates insertion of polytopic proteins into the mitochondrial inner membrane.  相似文献   

17.
The role of Tim9p in the assembly of the TIM22 import complexes   总被引:4,自引:0,他引:4  
Tim9p is located in the soluble 70-kDa Tim9p–Tim10p complex and the 300-kDa membrane complex in the mitochondrial TIM22 protein import system, which mediates the import of inner membrane proteins. From a collection of temperature-sensitive mutants, we have analyzed two in detail. tim9–3 contained two mutations and tim9–19 contained one mutation, all located near the 'twin CX3C' motif that is conserved in the small Tim proteins. As a result, the import components in the tim9–3 mutant mitochondria were severely reduced and assembled into complexes of aberrant sizes. Protein import was severely reduced and Tim9p and Tim10p binding to in vitro imported ADP/ATP carrier was impaired. In the tim9–19 mutant mitochondria, the 300-kDa membrane complex was assembled, although the soluble 70-kDa Tim9p–Tim10p complex was not detectable. Protein import was decreased only two-fold. When coexpressed in Escherichia coli , tim9–19 and TIM10 proteins failed to assemble into a 70-kDa complex. Our findings suggest that residues near the 'twin CX3C' motif are important for the assembly of Tim9p in both the Tim9p–Tim10p complex and the 300-kDa membrane complex.  相似文献   

18.
We have identified a new protein, Tim54p, located in the yeast mitochondrial inner membrane. Tim54p is an essential import component, required for the insertion of at least two polytopic proteins into the inner membrane, but not for the translocation of precursors into the matrix. Several observations suggest that Tim54p and Tim22p are part of a protein complex in the inner membrane distinct from the previously characterized Tim23p-Tim17p complex. First, multiple copies of the TIM22 gene, but not TIM23 or TIM17, suppress the growth defect of a tim54-1 temperature-sensitive mutant. Second, Tim22p can be coprecipitated with Tim54p from detergent-solubilized mitochondria, but Tim54p and Tim22p do not interact with either Tim23p or Tim17p. Finally, the tim54-1 mutation destabilizes the Tim22 protein, but not Tim23p or Tim17p. Our results support the idea that the mitochondrial inner membrane carries two independent import complexes: one required for the translocation of proteins across the inner membrane (Tim23p–Tim17p), and the other required for the insertion of proteins into the inner membrane (Tim54p–Tim22p).  相似文献   

19.
The small Tims chaperone hydrophobic precursors across the mitochondrial intermembrane space. Tim9 and Tim10 form the soluble TIM10 complex that binds precursors exiting from the outer membrane. Tim12 functions downstream, as the only small Tim peripherally attached on the inner membrane. We show that Tim12 has an intrinsic affinity for inner mitochondrial membrane lipids, in contrast to the other small Tims. We find that the C-terminal end of Tim12 is essential in vivo. Its deletion crucially abolishes assembly of Tim12 in complexes with the other Tims. The N-terminal end contains targeting information and also mediates direct binding of Tim12 to the transmembrane segments of the carrier substrates. These results provide a molecular basis for the concept that the essential role of Tim12 relies on its unique assembly properties that allow this subunit to bridge the soluble and membrane-embedded translocases in the carrier import pathway.  相似文献   

20.
The mitochondrial inner membrane contains preprotein translocases that mediate insertion of hydrophobic proteins. Little is known about how the individual components of these inner membrane preprotein translocases combine to form multisubunit complexes. We have analyzed the assembly pathway of the three membrane-integral subunits Tim18, Tim22, and Tim54 of the twin-pore carrier translocase. Tim54 displayed the most complex pathway involving four preprotein translocases. The precursor is translocated across the intermembrane space in a supercomplex of outer and inner membrane translocases. The TIM10 complex, which translocates the precursor of Tim22 through the intermembrane space, functions in a new posttranslocational manner: in case of Tim54, it is required for the integration of Tim54 into the carrier translocase. Tim18, the function of which has been unknown so far, stimulates integration of Tim54 into the carrier translocase. We show that the carrier translocase is built via a modular process and that each subunit follows a different assembly route. Membrane insertion and assembly into the oligomeric complex are uncoupled for each precursor protein. We propose that the mitochondrial assembly machinery has adapted to the needs of each membrane-integral subunit and that the uncoupling of translocation and oligomerization is an important principle to ensure continuous import and assembly of protein complexes in a highly active membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号