首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《朊病毒》2013,7(1):27-30
The human PrP gene (PRNP) has two major polymorphic codons: 129 for methionine (M) or valine (V), and 219 for glutamate (E) or lysine (K). The PRNP heterozygotes appear to be protected from sporadic CJD compared to the PRNP homozygotes. The molecular mechanism responsible for these protective effects of PRNP heterozygosity has remained elusive. In this review, we describe the inhibition of PrP conversion observed in a series of transmission studies using PRNP heterozygous animal models. In vCJD infection, the conversion incompetent human PrP 129V molecules showed an inhibitory effect on the conversion of human PrP 129M molecules in the 129M/V heterozygous mice. Furthermore, though the human PrP 219E and PrP 219K were both conversion competent in vCJD infection, these conversion competent PrP molecules showed an inhibitory effect in the 219E/K heterozygous animals. To explain this heterozygous inhibition, we propose a possible mechanism designated as the stone fence model.  相似文献   

2.
Summary In a particular experimental series involving anthers from F1 hybrid plants of Secale cereale L., it was possible to induce the formation of 68 microspore-derived plantlets of which 61 were albinos and 7 green. 6 of the albino plants were haploid, whereas most of the others were diploid. All green rye plants were directly diploid and, after extensive screening, proved to be heterozygous. Evidence is presented suggesting that these latter plants arose from unreduced microspores. The significance of this finding is discussed.  相似文献   

3.
Summary Two females showing partial expression of X-linked chondrodysplasia punctata were identified in a family. Bone dysplasia was caused by an aberrant X chromosome that had an inverse duplication of the segment Xp21.2–Xp22.2 and a deletion of Xp22.3-Xpter. To characterise the aberrant X chromosome, dosage blots were performed on genomic DNA from a carrier using a number of X-linked probes. Anonymous sequences from Xp21.2–Xp22.2 to which probes D2, 99.61, C7, pERT87-15, and 754 bind were duplicated on the aberrant X chromosome. The proposita was heterozygous for all these markers. Dosage blots also showed that the loci for steroid sulfatase and the cell surface antigen 12E7 (MIC2) were deleted as expected from the cytogenetic results. Mouse human cell hybrids were constructed that retained the normal X in the active state. Analysis of these hybrid clones for the markers from Xp21.2–Xp22.2 revealed that all the alleles of the informative markers, present in a single dosage in the genomic DNA, were carried on the normal X chromosome of the proposita. The duplicated X chromosome therefore had two identical alleles, indicating that the aberration resulted from an intrachromosomal rearrangement.  相似文献   

4.
5.
Heterozygous protein C deficiency type I   总被引:1,自引:0,他引:1  
B Kemkes-Matthes 《Blut》1989,58(4):201-206
Protein C is a vitamin K-dependent plasma protein which has anticoagulatory and profibrinolytic properties as a result of inactivating coagulation factors Va and VIIIa and enhancing fibrinolysis. Heterozygous protein C deficiency is well known to be a risk factor for thromboembolic diseases. We here present a family with 16 members deficient in protein C, out of which only two persons were suffering from thromboembolic disorders. In patients suffering from heterozygous protein C deficiency thromboembolic complications in childhood are rare and are not obligatory in adults. These patients should therefore not be treated with oral anticoagulants unless thromboembolic complications have already occurred or are imminent. Coumarin anticoagulation implicates a serious risk of coumarin skin necrosis in protein C deficient patients during the initial therapeutic phase. This risk may be avoided by initiating coumarin therapy with low doses of the drug and in cases of thromboembolic complications by overlapping with heparin anticoagulation.  相似文献   

6.
7.
The exchange behavior of non-attached, whole arm, X chromosome inversions was reexamined using nondisjunction in XXY females as an indirect measure of the frequency of nonexchange tetrads. Crossing over is quite normal in these inversion heterozygotes and is independent of the arrangement of the basal heterochromatin.  相似文献   

8.
Summary A 15-year-old girl affected by autosomal recessive 3-M slender boned nanism (3-MSBN) was studied. The clinically normal parents, two other obligate and two probable heterozygotes for the 3-MSBN gene from an unrelated family were radiologically investigated. All except one probable heterozygote showed mild features of the 3-MSBN, mainly bone slenderness and prominent talus. These findings are interpreted as demonstrative of the heterozygotic expression of the 3-MSBN gene.  相似文献   

9.
10.
11.
Several heterozygous diploids were made between genetically labelled derivatives of two strains ofPenicillium chrysogenum which produced relatively large amounts of penicillin and were of divergent lineage. The derivatives were labelled with spore colour and nutritional mutations. The diploids, although uniform in having wild type spore colour and being prototrophic, ranged from types having penicillin yields close to that of the original parents to types having less than a quarter of this titre level. Intermediate types had titre levels of about half to threequarters that of the high yielding diploids. Segregants were selected which had arisen naturally and also after nitrogen mustard treatment; most had the spore colour and auxotrophic phenotype of one or other immediate parent. From diploids of low and intermediate titre only haploid segregants with the genetical markers of one parent could be recovered with intact penicillin yield; haploids with the genetic markers of the other showed a marked reduction in yield. However, from diploids of high yield, both parental types could be recovered showing no loss of their original penicillin yield. The bearing of these results is discussed on the suggestion that different degrees of homozygosity between diploids may account for the titre variation observed. An alternative suggestion that mutations suppressive to penicillin titre might cause such variation is also considered.  相似文献   

12.
Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain.  相似文献   

13.
14.
The European waterfrog Rana esculenta (RL‐genotype) is a natural hybrid between R. ridibunda (RR) and R. lessonae (LL) and reproduces by hybridogenesis, i.e. it eliminates the L‐genome from the germline and produces gametes only containing the clonally transmitted R‐genome. Because of the lack of recombination, R‐genomes are prone to accumulate spontaneous deleterious mutations. The homozygous effects of such mutations become evident in matings between hybrids: their offspring possess two clonal R‐genomes and are generally inviable. However, the evolutionary fate of R. esculenta mainly depends on the heterozygous effects of mutations on the R‐genome. These effects may be hidden in the hybrid R. esculenta because it has been shown to benefit from spontaneous heterosis. To uncouple clonal inheritance from hybridity, I crossed R. esculenta with R. ridibunda to produce nonhybrid offspring with one clonal and one sexual R‐genome, and compared their survival and larval performance with normal, sexually produced R. ridibunda tadpoles. Because environmental stress can enhance the negative effects of mutation accumulation, I measured the performance at high and low food levels. There was no indication that tadpoles with a clonal genome performed worse at either food level, suggesting that at least in the larval stage, R. esculenta benefits from heterosis without incurring any costs because of heterozygous effects of deleterious mutations on the clonally transmitted R‐genome.  相似文献   

15.
Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling.  相似文献   

16.
17.
18.
DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinAΔE). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinAΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.  相似文献   

19.
Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16.  相似文献   

20.
The identification of disease-causing mutations in next-generation sequencing (NGS) data requires efficient filtering techniques. In patients with rare recessive diseases, compound heterozygosity of pathogenic mutations is the most likely inheritance model if the parents are non-consanguineous. We developed a web-based compound heterozygous filter that is suited for data from NGS projects and that is easy to use for non-bioinformaticians. We analyzed the power of compound heterozygous mutation filtering by deriving background distributions for healthy individuals from different ethnicities and studied the effectiveness in trios as well as more complex pedigree structures. While usually more then 30 genes harbor potential compound heterozygotes in single exomes, this number can be markedly reduced with every additional member of the pedigree that is included in the analysis. In a real data set with exomes of four family members, two sisters affected by Mabry syndrome and their healthy parents, the disease-causing gene PIGO, which harbors the pathogenic compound heterozygous variants, could be readily identified. Compound heterozygous filtering is an efficient means to reduce the number of candidate mutations in studies aiming at identifying recessive disease genes in non-consanguineous families. A web-server is provided to make this filtering strategy available at www.gene-talk.de.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号