首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.

Scope of Review

This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.

Major Conclusions

It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.

General Significance

Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

2.

Background  

Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial ND5 deletion recently discovered to segregate among wild populations of the soil nematode, Caenorhabditis briggsae. The normal product of ND5 is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.  相似文献   

3.

Background

Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts.

Methodology/Principal Findings

We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as “evolutionary redesign” because of the magnitude of the episodic bursts and the degree to which they affected core functional residues.

Conclusions/Significance

The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution.  相似文献   

4.

Background  

The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc.  相似文献   

5.

Background  

Efflux pump activity has been associated with multidrug resistance phenotypes in bacteria, compromising the effectiveness of antimicrobial therapy. The development of methods for the early detection and quantification of drug transport across the bacterial cell wall is a tool essential to understand and overcome this type of drug resistance mechanism. This approach was developed to study the transport of the efflux pump substrate ethidium bromide (EtBr) across the cell envelope of Escherichia coli K-12 and derivatives, differing in the expression of their efflux systems.  相似文献   

6.

Background  

Many population genetic and phylogenetic analyses of mitochondrial DNA (mtDNA) assume that mitochondrial genomes do not undergo recombination. Recently, concerted evolution of duplicated mitochondrial control regions has been documented in a range of taxa. Although the molecular mechanism that facilitates concerted evolution is unknown, all proposed mechanisms involve mtDNA recombination.  相似文献   

7.

Background  

Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF) essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine.  相似文献   

8.

Background

Mitochondria are a vital component of eukaryotic cells and their dysfunction is implicated in a large number of metabolic, degenerative and age-related human diseases. The mechanism or these disorders can be difficult to elucidate due to the inherent complexity of mitochondrial metabolism. To understand how mitochondrial metabolic dysfunction contributes to these diseases, a metabolic model of a human heart mitochondrion was created.

Results

A new model of mitochondrial metabolism was built on the principle of metabolite availability using MitoMiner, a mitochondrial proteomics database, to evaluate the subcellular localisation of reactions that have evidence for mitochondrial localisation. Extensive curation and manual refinement was used to create a model called iAS253, containing 253 reactions, 245 metabolites and 89 transport steps across the inner mitochondrial membrane. To demonstrate the predictive abilities of the model, flux balance analysis was used to calculate metabolite fluxes under normal conditions and to simulate three metabolic disorders that affect the TCA cycle: fumarase deficiency, succinate dehydrogenase deficiency and α-ketoglutarate dehydrogenase deficiency.

Conclusion

The results of simulations using the new model corresponded closely with phenotypic data under normal conditions and provided insight into the complicated and unintuitive phenotypes of the three disorders, including the effect of interventions that may be of therapeutic benefit, such as low glucose diets or amino acid supplements. The model offers the ability to investigate other mitochondrial disorders and can provide the framework for the integration of experimental data in future studies.  相似文献   

9.

Background  

Cytosolic glutathione transferases (cGST) are a large group of ubiquitous enzymes involved in detoxification and are well known for their undesired side effects during chemotherapy. In this work we have performed thorough phylogenetic analyses to understand the various aspects of the evolution and functional diversification of cGSTs. Furthermore, we assessed plausible correlations between gene duplication and substrate specificity of gene paralogs in humans and selected species, notably in mammalian enzymes and their natural substrates.  相似文献   

10.

Background

Bacteria and mitochondria contain translocases that function to transport proteins across or insert proteins into their inner and outer membranes. Extant mitochondria retain some bacterial-derived translocases but have lost others. While BamA and YidC were integrated into general mitochondrial protein transport pathways (as Sam50 and Oxa1), the inner membrane TAT translocase, which uniquely transports folded proteins across the membrane, was retained sporadically across the eukaryote tree.

Results

We have identified mitochondrial TAT machinery in diverse eukaryotic lineages and define three different types of eukaryote-encoded TatABC-derived machineries (TatAC, TatBC and TatC-only). Here, we investigate TatAC and TatC-only machineries, which have not been studied previously. We show that mitochondria-encoded TatAC of the jakobid Andalucia godoyi represent the minimal functional pathway capable of substituting for the Escherichia coli TatABC complex and can transport at least one substrate. However, selected TatC-only machineries, from multiple eukaryotic lineages, were not capable of supporting the translocation of this substrate across the bacterial membrane. Despite the multiple losses of the TatC gene from the mitochondrial genome, the gene was never transferred to the cell nucleus. Although the major constraint preventing nuclear transfer of mitochondrial TatC is likely its high hydrophobicity, we show that in chloroplasts, such transfer of TatC was made possible due to modifications of the first transmembrane domain.

Conclusions

At its origin, mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Our work shows for the first time that mitochondrial TAT has likely retained its unique function of transporting folded proteins at least in those few eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times in evolution. The overall lower hydrophobicity of the Oxa1 protein was likely the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways.
  相似文献   

11.

Background  

Mitochondria are sub-cellular organelles that have a central role in energy production and in other metabolic pathways of all eukaryotic respiring cells. In the last few years, with more and more genomes being sequenced, a huge amount of data has been generated providing an unprecedented opportunity to use the comparative analysis approach in studies of evolution and functional genomics with the aim of shedding light on molecular mechanisms regulating mitochondrial biogenesis and metabolism.  相似文献   

12.

Abstract  

By inhibiting only two or three of 12 restriction enzymes, the series of [M(phen)(edda)] complexes [M(II) is Cu, Co, Zn; phen is 1,10-phenanthroline; edda is N,N′-ethylenediaminediacetate] exhibit DNA binding specificity. The Cu(II) and Zn(II) complexes could differentiate the palindromic sequences 5′-CATATG-3′ and 5′-GTATAC-3′, whereas the Co(II) analogue could not. This and other differences in their biological properties may arise from distinct differences in their octahedral structures. The complexes could inhibit topoisomerase I, stabilize or destabilize G-quadruplex, and lower the mitochondrial membrane potential of MCF7 breast cells. The pronounced stabilization of G-quadruplex by the Zn(II) complex may account for the additional ability of only the Zn(II) complex to induce cell cycle arrest in S phase. On the basis of the known action of anticancer compounds against the above-mentioned individual targets, we suggest the mode of action of the present complexes could involve multiple targets. Cytotoxicity studies with MCF10A and cisplatin-resistant MCF7 suggest that these complexes exhibit selectivity towards breast cancer cells over normal ones.  相似文献   

13.
A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.  相似文献   

14.

Background  

In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species.  相似文献   

15.

Background  

During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i) the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii) the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii) the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity). These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation.  相似文献   

16.
17.

Background  

Rates of molecular evolution in different lineages can vary widely, and some of this variation might be predictable from aspects of species' biology. Investigating such predictable rate variation can help us to understand the causes of molecular evolution, and could also help to improve molecular dating methods. Here we present a comprehensive study of the life history correlates of substitution rate variation across the mammals, comparing results for mitochondrial and nuclear loci, and for synonymous and non-synonymous sites. We use phylogenetic comparative methods, refined to take into account the special nature of substitution rate data. Particular attention is paid to the widespread correlations between the components of mammalian life history, which can complicate the interpretation of results.  相似文献   

18.

Background  

Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships.  相似文献   

19.

Background  

Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial markers (COI, putative control region) in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals.  相似文献   

20.

Background  

Island populations are excellent model systems for studies of phenotypic, ecological and molecular evolution. In this study, molecular markers of mitochondrial and nuclear derivation were used to investigate the evolution, structure and origin of populations of the California slender salamander (Batrachoseps attenuatus) inhabiting the six major islands of San Francisco Bay, formed following the rising of sea level around 9,000 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号