首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myosin of rabbit red muscles   总被引:3,自引:0,他引:3  
  相似文献   

2.
1. The light-chain components of myosin from cardiac muscle (19000 and 27000 daltons) and of rabbit soleus and crureus muscles (19000, 27000 and 29000 daltons) were characterized. 2. The 19000-dalton components in carciac- and red-skeletal-muscle myosins were spontaneously modified to a component of slightly higher net negative charge. 3. The 19000-dalton component in cardiac and red skeletal muscles and their modified forms were phosphorylated by myosin light-chain kinase. 4. Evidence was obtained for the presence of myosin light-chain kinase in cardiac and red skeletal muscles. 5. Myosin light-chain kinase catalysed the phosphorylation of the whole light-chain fraction from white and red skeletal muscle at similar rates. The light-chain fraction of cardiac-muscle myosin was phosphorylated at a significantly lower rate. 6. The light-chain components of cardiac-muscle myosin and their phosphorylated froms were separated by ion-exchange chromatography and their amino acid compositions determined.  相似文献   

3.
Ca2+ regulation of arthropod actomyosin adenosine triphosphatase is associated with both the thin filaments, as in vertebrates, and with the myosin, as in molluscs. The actomyosin of decapod-crustacean fast muscles was previously considered to be an exception, displaying only a Ca2+-regulatory system linked to the thin filaments and not a myosin-linked regulatory system. In the present study, myosin regulation is demonstrated in a variety of decapod muscles when they are tested under more physiological ionic conditions. Myosin regulation is shown by using mixtures of pure rabbit actin with myofibrils, with actomyosin and with purified myosin, and in each case the adenosine triphosphatase is Ca2+ dependent. Myosin regulation may also occur in vertebrate striated muscle, but seemingly is lost during purification of the myosin.  相似文献   

4.
5.
This work aimed to determine whether the heavy chains of myosin from different striated muscle were phosphorylated. Myosin and its heavy chains were prepared from cardiac and skeletal muscles of rats injected in vivo with radioactive phosphates.The results for radioactive phosphate localization indicate the absence of phosphate from pure heavy chains and from any of their purified fragments, whatever the striated muscle used. In addition, phosphates are present in the myosin phosphorylated light chain and in a contaminating protein closely associated to the myosin heavy chain.  相似文献   

6.
7.
A messenger ribonucleoprotein (mRNP) particle containing the mRNA coding for the myosin heavy chain (MHC mRNA) has been isolated from the postpolysomal fraction of homogenates of 14-day-old chick embryonic muscles. The mRNP sediments in sucrose gradient as 120 S and has a characteristic buoyant density of 1.415 g/cm3, which corresponds to an RNA:protein ratio of 1:3.8. The RNA isolated from the 120 S particle behaved like authentic MHC mRNA purified from chick embryonic muscles with respect to electrophoretic mobility and ability to program the synthesis of myosin heavy chain in a rabbit reticulocyte lysate system as judged by multi-step co-purification of the in vitro products with chick embryonic leg muscle myosin added as carrier. The RNA obtained from the 120 S particle was as effective as purified MHC mRNA in stimulating the synthesis of the complete myosin heavy chains in rabbit reticulocyte lysate under conditions where non-muscle mRNAs had no such effect. Analysis of the protein moieties of the 120 S particle by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows the presence of seven distinct polypeptides with apparent molecular weights of 44,000, 49,000, 53,000, 81,000, 83,000, and 98,000, whereas typical ribosomal proteins are absent. These results indicate that the 120 S particles are distinct cellular entities unrelated to ribosomes or initiation complexes. The presence of muscle-specific mRNAs as cytoplasmic mRNPs suggests that these particles may be involved in translational control during myogenesis in embryonic muscles.  相似文献   

8.
To determine whether or not the two heads of myosin from striated adductor muscles of scallop are nonidentical and the main intermediate of the ATPase reaction, MADPP, is produced only on one of the two heads, the Pi-burst size, the amount of total bound nucleotides and the amount of bound ADP during the ATPase reaction were measured in this study. The Pi-burst size was 1 mol per mol in the presence of 0.1-5 mM Mg2+ ions. The amount of total nucleotides bound to myosin was 2 mol per mol. Both the amounts of bound ADP and ATP at sufficiently high ATP concentrations were 1 mol per mol of striated adductor myosin, and the affinity for ADP binding was higher than that for ATP binding. These findings indicate that MADPP or MATP is produced on each of the two heads of striated adductor myosin on its interaction with ATP. The fluorescence intensity at 340 nm of striated adductor myosin was enhanced by about 7% upon addition of ATP. The time for the half maximum fluorescence enhancement, tau 1/2, at 5 microM ATP was 0.25 s, which was almost equal to the tau 1/2 values for the Pi-burst and for the dissociation of actomyosin reconstituted from striated adductor myosin and skeletal muscle F-actin. The dependences on ATP concentration of the extent of the fluorescence enhancement and the dissociation of actomyosin could be explained by assuming that these changes are associated with the formation of MADPP on one of the two heads of myosin. The Pi-burst size and the amount of bound ADP of smooth adductor myosin were slightly but significantly larger than 1 mol per mol. Both ATPase reactions of striated and smooth adductor myofibrils showed the substrate inhibition. The extent of substrate inhibition of ATPase of smooth adductor myofibrils was less than that of striated adductor myofibrils. All the present findings support the view that the nonidentical two-headed structure is required for substrate inhibition of the actomyosin ATPase reaction.  相似文献   

9.
Five light chains were isolated from the ordinary and dark muscle myosins of mackerel Pneumatophorus japonicus japonicus, by a method consisting of DTNB and urea treatments, followed by DEAE-cellulose chromatography. Some physicochemical and immunochemical properties of the light chains thus obtained were analyzed. A1, A2, and DTNB light chains from ordinary muscle myosin resembled one another in ultraviolet absorption spectrum, as did D1 and D2 light chains from dark muscle myosin. However, the absorption spectra of the former three differed from those of the latter two. Amino acid compositions of A1 and A2 light chains resembled each other, except for a few amino acids such as lysine, proline, and alanine. Tryptophan was detected only in DTNB light chain. D1 and D2 light chains showed general similarity, except for a remarkably higher proline content in D1. Anti-A1 (or anti-A2) antiserum exhibited a cross-reaction against A2 (or A1) in both immunoelectrophoresis and ELISA, indicating an immunochemical similarity of these two alkali light chains. No precipitin line appeared when anti-A1 or anti-A2 antiserum was diffused against DTNB light chain in immunoelectrophoresis. In ELISA, however, each pair showed cross-reactivity values as high as 50-80%, values which were rather higher than those obtained with heterologous alkali light chains (10-40%). Anti-DTNB light chain antiserum reacted with either alkali light chain in both methods. Anti-D1 antiserum cross-reacted against D2, and anti-D2 antiserum did against D1. These myosin light chains exhibited a high immunochemical tissue-specificity.  相似文献   

10.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

11.
  • 1.1. Polymorphism of native myosin and myosin heavy chain (MHC) of fish skeletal muscles was analysed by pyrophosphate and SDS-gel electrophoreses.
  • 2.2. Depending on the species, three or four myosin isoforms were detected in the white muscle, one or two isoforms in the pure red muscle, and four isomyosins were found in the red muscle composed of red and pink (intermediate) fibres.
  • 3.3. It is suggested that all main types of fish muscle fibre (red, intermediate and white) differ in myosin isoform content.
  • 4.4. Myosin heavy chain of the red muscle is a distinct protein from that of the white muscle. However, structural differences between these proteins vary among species.
  相似文献   

12.
13.
Differential expression of multiple myosin heavy chain (MyHC) genes largely determines the diversity of critical physiological, histochemical, and enzymatic properties characteristic of skeletal muscle. Hypotheses to explain myofiber diversity range from intrinsic control of expression based on myoblast lineage to extrinsic control by innervation, hormones, and usage. The unique innervation and specialized function of crayfish (Procambarus clarkii) appendicular and abdominal musculature provide a model to test these hypotheses. The leg opener and superficial abdominal extensor muscles are innervated by tonic excitatory motoneurons. High resolution SDS-PAGE revealed that these two muscles express the same MyHC profile. In contrast, the deep abdominal extensor muscles, innervated by phasic motoneurons, express MyHC profiles different from the tonic profiles. The claw closer muscles are dually innervated by tonic and phasic motoneurons and a mixed phenotype was observed, albeit biased toward the phasic profile seen in the closer muscle. These results indicate that multiple MyHC isoforms are present in the crayfish and that differential expression is associated with diversity of muscle type and function.  相似文献   

14.
15.
The maximal ATP-induced enhancement of fluorescence and the dependence of this enhancement on ATP concentration were determined for myosins from fast and slow skeletal and cardiac muscle of the rabbit. With myosins from slow and cardiac muscle modifications in the preparative procedure and chromatography on DEAE-Sephadex were required to obtain preprations which were free of actin, which exhibited the maximal fluorescence enhancement and which bound two moles of ATP per mole of myosin. Since the fluorescence enhancement of cardiac and slow muscle myosins is labile at slightly alkaline pH, it was also necessary to minimize incubation at pH greater than 7 in order to attain the maximal enhancement. With fast muscle myosin the changes in preparative procedure, together with chromatography, led to a 50 to 100% increase in the steady-state rate of ATP hydrolysis and fluorescence enhancement, without changing the maximal binding of ATP. From a comparison of the rate of steady-state hydrolysis of ATP with the rate of decay of the enhanced fluorescence, it appears that for all three myosins, both ATP binding sites have the same enzymatic activity, the steady-state rate per site being slower for cardiac and slow muscle myosins than for fast muscle myosin.  相似文献   

16.
We present an up-to-date study on the nature, at the protein level, of various members of the dystrophin complex at the muscle cell membrane by comparing red and white caudal muscles from Torpedo marmorata. Our investigations involved immunodetection approaches and Western blotting analysis. We determined the presence or absence of different molecules belonging to the dystrophin family complex by analyzing their localization and molecular weight. Specific antibodies directed against dystrophin, i.e., DRP2 alpha-dystrobrevin, beta-dystroglycan, alpha-syntrophin, alpha-, beta-, gamma-, and delta-sarcoglycan, and sarcospan, were used. The immunofluorescence study (confocal microscopy) showed differences in positive immunoreactions at the sarcolemmal membrane in these slow-type and fast-type skeletal muscle fibers. Protein extracts from T. marmorata red and white muscles were analyzed by Western blotting and confirmed the presence of dystrophin and associated proteins at the expected molecular weights. Differences were confirmed by comparative immunoprecipitation analysis of enriched membrane preparations with anti-beta-dystroglycan polyclonal antibody. These experiments revealed clear complex or non-complex formation between members of the dystrophin system, depending on the muscle type analyzed. Differences in the potential function of these various dystrophin complexes in fast or slow muscle fibers are discussed in relation to previous data obtained in corresponding mammalian tissues. (J Histochem Cytochem 49:857-865, 2001)  相似文献   

17.
1. Based on incorporation of radioactively labeled N-ethylmaleimide, the readily reactive thiol groups of isolated myosin (EC 3.6.1.3) from fast, slow and cardiac muscles could be classified into 3 types. All 3 myosins contain 2 thiol-1, 2 thiol-2 and a variable number of thiol-3 groups per molecule. Both thiol-1 and thiol-2 groups which are essential for functioning of the K+-stimulated ATPase, are located in the heavy chains in all 3 myosin types. 2. The variation in the incorporation pattern of N-ethylmaleimide over the 3 thiol group classes under steady-state conditions of Mg(2+) - ATP hydrolysis allowed different conformations of some reaction intermediates to be characterized. In all 3 types of myosin the hydrolytic cycle of Mg(2+) - ATP was found to be controlled by the same step at 25 degrees C. In all three cases, this rate-limiting step is changed in the same way by lowereing temperature. 3. Using the chemically determined molecular weights for myosin light chains, their stoichiometry was found on the basis of sodium dodecyl sulfate electrophoresis to be 1.2 : 2.1 : 0.8 for light chain-1: light chain-2:light chain-3 per molecule of fast myosin, 2.0 : 1.9 for light chain-1:light chain-2 per molecule of slow myosin and 1.9 : 1.9 for light chain-1:light chain-2 per molecule of cardiac myosin. This qualitative difference in light subunit composition between the fast and the two types of slow myosin is not reflected in the small variations of the characteristics exhibited by the isolated myosins, but rather seems to be connected with their respective myofibrillar ATPase activities.  相似文献   

18.
Meridional x-ray diffraction diagrams, recorded with high angular resolution, from muscles contracting at the plateau of isometric tension show that the myosin diffraction orders are clusters of peaks. These clusters are due to pronounced interference effects between the myosin diffracting units on either side of the M-line. A theoretical analysis based on the polarity of the myosin (and actin) filaments shows that it is possible to extract phase information from which the axial disposition of the myosin heads can be determined. The results show that each head in a crown pair has a distinct structural disposition. It appears that only one of the heads in the pair stereospecifically interacts with the thin filament at any one time.  相似文献   

19.
Statistical mechanics provides the link between microscopic properties of matter and its bulk properties. The grand canonical ensemble formalism was applied to contracting rat skeletal muscles, the soleus (SOL, n = 30) and the extensor digitalis longus (EDL, n = 30). Huxley's equations were used to calculate force (pi) per single crossbridge (CB), probabilities of six steps of the CB cycle, and peak muscle efficiency (Eff(max)). SOL and EDL were shown to be in near-equilibrium (CB cycle affinity 2.5 kJ/mol) and stationary state (linearity between CB cycle affinity and myosin ATPase rate). The molecular partition function (z) was higher in EDL (1.126+/-0.005) than in SOL (1.050+/-0.003). Both pi and Eff(max) were lower in EDL (8.3+/-0.1 pN and 38.1+/-0.2%, respectively) than in SOL (9.2+/-0.1 pN and 42.3+/-0.2%, respectively). The most populated step of the CB cycle was the last detached state (D3) (probability P(D3): 0.890+/-0.004 in EDL and 0.953+/-0.002 in SOL). In each muscle group, both pi and Eff(max) linearly decreased with z and statistical entropy and increased with P(D3). We concluded that statistical mechanics and Huxley's formalism provided a powerful combination for establishing an analytical link between chemomechanical properties of CBs, molecular partition function and statistical entropy.  相似文献   

20.
Isozymes of myosin in growing and regenerating rat muscles   总被引:4,自引:0,他引:4  
Native myosin isozymes of rat muscles have been isolated by electrophoreses in non-dissociating conditions. Their mobilities were measured, using taenia coli myosin as an internal standard and their relative concentrations were determined by computer planimetry of the electrophoretograms. Three isozymes were observed in extensor digitorum longus (EDL), two in soleus (SOL), four in neonatal muscles three days before birth. Regenerates of minced EDL or SOL muscles in adult animals had no native myosin the third day after surgery; they were similar to neonatal muscles 15 days after surgery and to adult muscles 60 days after surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号