首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hays FA  Jones ZJ  Ho PS 《Biochemistry》2004,43(30):9813-9822
The inosine-containing sequence d(CCIGTACm(5)CGG) is shown to crystallize as a four-stranded DNA junction. This structure is nearly identical to the antiparallel junction formed by the parent d(CCGGTACm(5)()CGG) sequence [Vargason, J. M., and Ho, P. S. (2002) J. Biol. Chem. 277, 21041-21049] in terms of its conformational geometry, and inter- and intramolecular interactions within the DNA and between the DNA and solvent, even though the 2-amino group in the minor groove of the important G(3).m(5)C(8) base pair of the junction core trinucleotide (italicized) has been removed. In contrast, the analogous 2,6-diaminopurine sequence d(CCDGTACTGG) crystallizes as resolved duplex DNAs, just like its parent sequence d(CCAGTACTGG) [Hays, F. A., Vargason, J. M., and Ho, P. S. (2003) Biochemistry 42, 9586-9597]. These results demonstrate that it is not the presence or absence of the 2-amino group in the minor groove of the R(3).Y(8) base pair that specifies whether a sequence forms a junction, but the positions of the extracyclic amino and keto groups in the major groove. Finally, the study shows that the arms of the junction can accommodate perturbations to the B-DNA conformation of the stacked duplex arms associated with the loss of the 2-amino substituent, and that two hydrogen bonding interactions from the C(7) and Y(8) pyrimidine nucleotides to phosphate oxygens of the junction crossover specify the geometry of the Holliday junction.  相似文献   

2.
Hays FA  Vargason JM  Ho PS 《Biochemistry》2003,42(32):9586-9597
Structures of the DNA sequences d(CCGGCGCCGG) and d(CCAGTACbr(5)UGG) are presented here as four-way Holliday junctions in their compact stacked-X forms, with antiparallel alignment of the DNA strands. Thus, the ACC-trinucleotide motif, previously identified as important for stabilizing the junction, is now extended to PuCPy, where Pu is either an adenine or guanine, and Py is either a cytosine, 5-methylcytosine, or 5-bromouracil but not thymine nucleotide. We see that both sequence and base substituents affect the geometry of the junction in terms of the interduplex angle as well as the previously defined conformational variables, J(roll) (the rotation of the stacked duplexes about their respective helical axis) and J(slide) (the translational displacement of the stacked duplexes along their respective helical axis). The structures of the GCC and parent ACC containing junctions fall into a distinct conformational class that is relatively undistorted in terms of J(slide) and J(roll), with interduplex angles of 40-43 degrees. The substituted ACbr(5)U structure, however, is more akin to that of the distorted methylated ACm(5)C containing junction, with J(slide) (>or=2.3 A) and a similar J(roll) (164 degrees) opening the major groove-side of the junction, but shows a reduced interduplex angle. In contrast, the analogous d(CCAGTACTGG) sequence has to date been crystallized only as resolved B-DNA duplexes. This suggests that there is an electronic effect of substituents at the pyrimidine Py position on the stability of four-stranded junctions. The single-crystal structures presented here, therefore, show how sequence affects the detailed geometry, and subsequently, the associated stability and conformational dynamics of the Holliday junction.  相似文献   

3.
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na(+) and Ca(2+), and separately with Sr(2+) to resolutions of 1.85A and 1.65A, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na(+) sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca(2+) sites in the same structure are at the CG/CG steps in the minor groove. The Sr(2+) ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr(2+) derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4 degrees in the Ca(2+) and Na(+) containing structure, and 13.4 degrees in the Sr(2+) containing structure. The crossover angles at the junction are 39.3 degrees and 43.3 degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3A is observed for the Sr(2+) containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction.  相似文献   

4.
The MER3 protein of Saccharomyces cerevisiae is required for crossover in meiosis and has been suggested to act at the initiation of homologous pairing and the resolution of Holliday junctions. The purified MER3 protein is a DNA helicase that translocates along single-stranded DNA in the 3' to 5' direction displacing annealed DNA fragments. Here, MER3 was found to be able to unwind various double-stranded DNA (dsDNA) substrates, including a 30-bp dsDNA with a 20-nucleotide 3'-overhang, a 30-bp dsDNA with a 20-nucleotide 5'-overhang, a 50-bp dsDNA with blunt ends, and a Holliday junction with 25-bp arms, each of which had a blunt end. Efficient unwinding of the 3'-overhang substrate appeared to initiate by the binding of MER3 to the 3' single-stranded tail in a reaction that required six or more unpaired bases. Unwinding of the blunt end and 5'-overhang substrates appeared to initiate at the blunt ends of these substrates. Unwinding of the Holliday junction was more efficient than the unwinding of the blunt and 5'-overhang substrates and was influenced by Mg(2+) concentrations that cause changes in the structure of the junction. Possible roles for Holliday junction unwinding in meiotic crossover are discussed.  相似文献   

5.
The crystal structure of the B-DNA hexamer d(CTCGAG) has been solved at 1.9 A resolution by iterative single isomorphous replacement, using the brominated derivative d(CG5BrCGAG), and refined to an R-factor of 18.6% for 120 nonhydrogen nucleic acid atoms and 32 water molecules. Although the central four base pairs form a typical B-form helix, several parameters suggest a transition to an A-like conformation at the termini. Based on this observation, a B-to-A transition was modeled, maintaining efficient base stacking across the junction. The wide minor groove (approximately 6.9 A) is reminiscent of that in the side-by-side double drug-DNA complexes and hosts a double spine of hydration. The global helix axes of the pseudo-continuous helices are at an acute angle of 60 degrees. The pseudocontinuous stacking is reinforced by the minor groove water structure extending between the two duplexes. The crossover point of two pairs of stacked duplexes is at the stacking junction, unlike that observed in the B-DNA decamers and dodecamers. This arrangement may have implications for the structure of a four-way DNA junction. The duplexes are arranged around a large (approximately 20 A diameter) channel centered on a 6(2) screw axis.  相似文献   

6.
The stereochemistry of a four-way DNA junction: a theoretical study.   总被引:18,自引:7,他引:11       下载免费PDF全文
The stereochemical conformation of the four-way helical junction in DNA (the Holliday junction; the postulated central intermediate of genetic recombination) has been analysed, using molecular mechanical computer modelling. A version of the AMBER program package was employed, that had been modified to include the influence of counterions and a global optimisation procedure. Starting from an extended planar structure, the conformation was varied in order to minimise the energy, and we discuss three structures obtained by this procedure. One structure is closely related to a square-planar cross, in which there is no stacking interaction between the four double helical stems. This structure is probably closely similar to that observed experimentally in the absence of cations. The remaining two structures are based on related, yet distinct, conformations, in which there is pairwise coaxial stacking of neighbouring stems. In these structures, the four DNA stems adopt the form of two quasi-continuous helices, in which base stacking is very similar to that found in standard B-DNA geometry. The two stacked helices so formed are not aligned parallel to each other, but subtend an angle of approximately 60 degrees. The strands that exchange between one stacked helix and the other are disposed about the smaller angle of the cross (i.e. 60 degrees rather than 120 degrees), generating an approximately antiparallel alignment of DNA sequences. This structure is precisely the stacked X-structure proposed on the basis of experimental data. The calculations indicate distortions from standard B-DNA conformation that are required to adopt the stacked X-structure; a widening of the minor groove at the junction, and reorientation of the central phosphate groups of the exchanging strands. An important feature of the stacked X-structure is that it presents two structurally distinct sides. These may be recognised differently by enzymes, providing a rationalisation for the points of cleavage by Holliday resolvases.  相似文献   

7.
Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG). A detailed comparison of the two structures helps to distinguish distortions of the DNA conformation that are inherent to the cross-overs of the junctions in this crystal system from those that are consequences of the mismatched dG.dA base-pair in the d(CCGGGACCGG) structure. This analysis shows that the junction itself perturbs the sequence-dependent conformational features of the B-DNA duplexes and the associated patterns of hydration in the major and minor grooves only minimally. This supports the idea that a DNA four-way junction can be assembled at relatively low energetic cost. Both structures show a concerted rotation of the adjacent duplex arms relative to B-DNA, and this is discussed in terms of the conserved interactions between the duplexes at the junctions and further down the helical arms. The interactions distant from the strand cross-overs of the junction appear to be significant in defining its macroscopic properties, including the angle relating the stacked duplexes across the junction.  相似文献   

8.
The four-way DNA (Holliday) junction is an important postulated intermediate in the process of genetic recombination. Earlier studies have suggested that the junction exists in two alternative conformations, depending upon the salt concentration present. At high salt concentrations the junction folds into a stacked X structure, while at low salt concentrations the data indicate an extended unstacked conformation. The stereochemical conformation of the four-way DNA junction at low salt (low alkali ion concentration and no alkaline earth ions) was established by comparing the efficiency of fluorescence resonance energy transfer (FRET) between donor and acceptor molecules attached pairwise in three permutations to the 5' termini of the duplex arms. A new variation of FRET was implemented based upon a systematic variation of the fraction of donor labeled single strands. The FRET results indicate that the structure of the four-way DNA junction at low salt exists as an unstacked, extended, square arrangement of the four duplex arms. The donor titration measurements made in the presence of magnesium ions clearly show the folding of the junction into the X stacked structure. In addition, the FRET efficiency can be measured. The fluorescence anisotropy of the acceptor in the presence of Mg2+ during donor titrations was also measured; the FRET efficiency can be calculated from the anisotropy data and the results are consistent with the folded, stacked X structure.  相似文献   

9.
T Allers  M Lichten 《Cell》2001,106(1):47-57
Unitary models of meiotic recombination postulate that a central intermediate containing Holliday junctions is resolved to generate either noncrossover or crossover recombinants, both of which contain heteroduplex DNA. Contrary to this expectation, we find that during meiosis in Saccharomyces cerevisiae, noncrossover heteroduplex products are formed at the same time as Holliday junction intermediates. Crossovers appear later, when these intermediates are resolved. Furthermore, noncrossover and crossover recombination are regulated differently. ndt80 mutants arrest in meiosis with unresolved Holliday junction intermediates and very few crossovers, while noncrossover heteroduplex products are formed at normal levels and with normal timing. These results suggest that crossovers are formed by resolution of Holliday junction intermediates, while most noncrossover recombinants arise by a different, earlier pathway.  相似文献   

10.
Yang XL  Robinson H  Gao YG  Wang AH 《Biochemistry》2000,39(36):10950-10957
The binding of a macrocyclic bisacridine and an antitumor intercalator ametantrone to DNA has been studied. We carried out X-ray diffraction analyses of the complexes between both intercalators and CGTACG. We have determined the crystal structure, by the multiple-wavelength anomalous diffraction (MAD) method, of bisacridine complexed with CGTA[br(5)C]G at 1.8 A resolution. The refined native crystal structure at 1.1 A resolution (space group C222, a = 29.58 A, b = 54.04 A, c = 40.22 A, and R-factor = 0.163) revealed that only one acridine of the bisacridine drug binds at the C5pG6 step of the DNA, with the other acridine plus both linkers completely disordered. Surprisingly, both terminal G.C base pairs are unraveled. The C1 nucleotide is disordered, and the G2 base is bridged to its own phosphate P2 through a hydrated Co(2+) ion. G12 is swung toward the minor groove with its base stacked over the backbone. The C7 nucleotide is flipped away from the duplex part and base paired to a 2-fold symmetry-related G6. The central four base pairs adopt the B-DNA conformation. An unusual intercalator platform is formed by bringing four complexes together (involving the 222 symmetry) such that the intercalator cavity is flanked by two sets of G x C base pairs (i.e., C5 x G8 and G6 x C7) on each side, joined together by G6 x G8 tertiary base pairing interactions. In the bisacridine-CGTACG complex, the intercalation platform is intercalated with two acridines, whereas in the ametantrone-CGTACG complex, only one ametantrone is bound. NMR titration of the bisacridine to AACGATCGTT suggests that the bisacridine prefers to bridge more than one DNA duplex by intercalating each acridine to different duplexes. The results may be relevant in understanding binding of certain intercalators to DNA structure associated with the quadruplet helix and Holliday junction.  相似文献   

11.
Junction-resolving enzymes are nucleases that exhibit structural selectivity for the four-way (Holliday) junction in DNA. In general, these enzymes both recognize and distort the structure of the junction. New insight into the molecular recognition processes has been provided by two recent co-crystal structures of resolving enzymes bound to four-way DNA junctions in highly contrasting ways. T4 endonuclease VII binds the junction in an open conformation to an approximately flat binding surface whereas T7 endonuclease I envelops the junction, which retains a much more three-dimensional structure. Both proteins make contacts with the DNA backbone over an extensive area in order to generate structural specificity. The comparison highlights the versatility of Holliday junction resolution, and extracts some general principles of recognition.  相似文献   

12.
A novel Holliday junction resolving activity has been identified in fractionated cell extracts of the fission yeast Schizosaccharomyces pombe . The enzyme catalyses endonucleolytic cleavage of Holliday junction-containing chi DNA and synthetic four-way DNA junctions. The activity cuts with high specificity a synthetic four-way junction containing a 12 bp core of homologous sequences but has no activity on another four-way junction (with a fixed crossover point), a three-way junction, linear duplex DNA or duplex DNA containing six mismatched nucleotides in the centre. The major cleavage sites map as single nicks in the vicinity of the crossover point, 3' of a thymidine residue. These data indicate that the activity has a strong DNA structure selectivity as well as a limited sequence preference; features similar to the Holliday junction resolving enzymes RuvC of Escherichia coli and the mitochondrial CCE1 (cruciform-cuttingenzyme 1) of Saccharomyces cerevisiae. A putative homologue of CCE1 in S.pombe (YDC2_SCHPO) has been identified through a search of the sequence database. The open reading frame of this gene has been cloned and the encoded protein, YDC2, expressed in E.coli . The purified recombinant YDC2 exhibits Holliday junction resolvase activity and is, therefore, a functional S.pombe homologue of CCE1. The resolvase YDC2 shows the same substrate specificity and produces identical cleavage sites as the activity obtained from S. pombe cells. Both YDC2 and the cellular activity cleave Holliday junctions in both orientations to give nicks that can be ligated in vitro. The partially purified Holliday junction resolving enzyme in fission yeast is biochemically indistinguishable from recombinant YDC2 and appears to be the same protein.  相似文献   

13.
Endonuclease VII is an enzyme from bacteriophage T4 capable of resolving four-arm Holliday junction intermediates in recombination. Since natural Holliday junctions have homologous (2-fold) sequence symmetry, they can branch migrate, creating a population of substrates that have the branch point at different sites. We have explored the substrate requirements of endonuclease VII by using immobile analogs of Holliday junctions that lack this homology, thereby situating the branch point at a fixed site in the molecule. We have found that immobile junctions whose double-helical arms contain fewer than nine nucleotide pairs do not serve as substrates for resolution by endonuclease VII. Scission of substrates with 2-fold symmetrically elongated arms produces resolution products that are a function of the particular arms that are lengthened. We have confirmed that the scission products are those of resolution, rather than nicking of individual strands, by using shamrock junction molecules formed from a single oligonucleotide strand. A combination of end-labeled and internally labeled shamrock molecules has been used to demonstrate that all of the scission is due to coordinated cleavage of DNA on opposite sides of the junction, 3' to the branch point. Endonuclease VII is known to cleave the crossover strands of Holliday junctions in this fashion. The relationship of the long arms to the cleavage direction suggests that the portion of the enzyme which requires the minimum arm length interacts with the pair of arms containing the 3' portion of the crossover strands on the bound surface of the antiparallel junction.  相似文献   

14.
Recent genetic and biochemical studies revealed the mechanisms of late stage of homologous recombination in E. coli. A central intermediate of recombination called “Holliday structure”, in which two homologous duplex DNA molecules are linked by a single-stranded crossover, is formed by the functions of RecA and several other proteins. The products of the ruvA and ruvB genes, which constitute an SOS regulated operon, form a functional complex that promotes migration of Holliday junctions by catalyzing strand exchange reaction, thus enlarging the heteroduplex region. RuvA is a DNA-binding protein specific for these junctions, and RuvB is a motor molecule for branch migration providing energy by hydrolyzing ATP. The product of the ruvC gene, which is not regulated by the SOS system, resolves Holliday junctions by introducing nicks at or near the crossover junction in strands with the same polarity at the same sites. The recombination reaction is completed by sealing the nicks with DNA ligase, resulting in spliced or patched recombinants. The product of the recG gene provides an alternative route for resolving Holliday junctions. RecG has been proposed to promote branch migration in the opposite direction to that promoted by RecA protein. The atomic structure of RuvC protein revealed by crystallographic study, when combined with mutational analysis of RuvC, provides mechanistic insights into the interactions of RuvC with Holliday junction.  相似文献   

15.
The single-crystal structures are presented for two DNA sequences with the thymine bases covalently cross-linked across the complementary strands by 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT). The HMT-adduct of d(CCGCTAGCGG) forms a psoralen-induced Holliday junction, showing for the first time the effect of this important class of chemotheraputics on the structure of the recombination intermediate. In contrast, HMT-d(CCGGTACCGG) forms a sequence-dependent junction. In both structures, the DNA duplex is highly distorted at the thymine base linked to the six-member pyrone ring of the drug. The psoralen cross-link defines the intramolecular interactions of the drug-induced junction, while the sequence-dependent structure is nearly identical to the native Holliday junction of d(CCGGTACCGG) alone. The two structures contrast the effects of drug- and sequence-dependent interactions on the structure of a Holliday junction, suggesting a role for psoralen in the mechanism to initiate repair of psoralen-lesions in mammalian DNA.  相似文献   

16.
DNA recombination is a universal biological event responsible both for the generation of genetic diversity and for the maintenance of genome integrity. A four-way DNA junction, also termed Holliday junction, is the key intermediate in nearly all recombination processes. This junction is the substrate of recombination enzymes that promote branch migration or catalyze its resolution. We have determined the crystal structure of a four-way DNA junction by multiwavelength anomalous diffraction, and refined it to 2.16 A resolution. The structure has two-fold symmetry, with pairwise stacking of the double-helical arms, which form two continuous B-DNA helices that run antiparallel, cross in a right-handed way, and contain two G-A mismatches. The exchanging backbones form a compact structure with strong van der Waals contacts and hydrogen bonds, implying that a conformational change must occur for the junction to branch-migrate or isomerize. At the branch point, two phosphate groups from one helix occupy the major groove of the other one, establishing sequence-specific hydrogen bonds. These interactions, together with different stacking energies and steric hindrances, explain the preference for a particular junction stacked conformer.  相似文献   

17.
Sha R  Liu F  Seeman NC 《Biochemistry》2000,39(37):11514-11522
The Holliday junction is a central intermediate in genetic recombination. It contains four strands of DNA that are paired into four double helical arms flanking a branch point. In naturally occurring Holliday junctions, the sequence flanking the branch point contains 2-fold (homologous) symmetry. As a consequence of this symmetry, the junction can undergo a conformational isomerization known as branch migration, which relocates the site of branching. In the absence of proteins and in the presence of Mg(2+), the four arms are known to stack in pairs, forming two helical domains whose orientations are antiparallel. Nevertheless, the mechanistic models proposed for branch migration are all predicated on a parallel alignment of helical domains. Here, we have used antiparallel DNA double crossover molecules to demonstrate that branch migration can occur in antiparallel Holliday junctions. We have constructed a DNA double crossover molecule with three crossover points. Two adjacent branch points in this molecule are flanked by symmetric sequences. The symmetric crossover points are held immobile by the third crossover point, which is flanked by asymmetric sequences. Restriction of the helices that connect the immobile junction to the symmetric junctions releases this constraint. The restricted molecule undergoes branch migration, even though it is constrained to an antiparallel conformation.  相似文献   

18.
The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease.  相似文献   

19.
The Holliday junction is a prominent intermediate in genetic recombination that consists of four double helical arms of DNA flanking a branch point. Under many conditions, the Holliday junction arranges its arms into two stacked domains that can be oriented so that genetic markers are parallel or antiparallel. In this arrangement, two strands retain a helical conformation, and the other two strands effect the crossover between helical domains. The products of recombination are altered by a crossover isomerization event, which switches the strands fulfilling these two roles. It appears that effecting this switch from the parallel conformation by the simplest mechanism results in braiding the crossover strands at the branch point. In previous work we showed by topological means that a short, parallel, DNA double crossover molecule with closed ends did not braid its branch point; however, that molecule was too short to adopt the necessary positively supercoiled topology. Here, we have addressed the same problem using a larger molecule of the same type. We have constructed a parallel DNA double crossover molecule with closed ends, containing 14 double helical turns in each helix between its crossover points. We have prepared this molecule in a relaxed form by simple ligation and in a positively supercoiled form by ligation in the presence of netropsin. The positively supercoiled molecule is of the right topology to accommodate braiding. We have compared the relaxed and supercoiled versions for their responses to probes that include hydroxyl radicals, KMnO4, the junction resolvases endonuclease VII and RuvC, and RuvC activation of KMNO4 sensitivity. In no case did we find evidence for a braid at the crossover point. We conclude that Holliday junctions do not braid at their branch points, and that the topological problem created by crossover isomerization in the parallel conformation is likely to be solved by distributing the stress over the helices that flank the branch point.  相似文献   

20.
Construction and analysis of parallel and antiparallel Holliday junctions   总被引:4,自引:0,他引:4  
The Holliday junction is a four-stranded DNA intermediate that arises during recombination reactions. We have designed and constructed a set of Holliday junction analogs that model each of the ideal conformations available to a 2-fold symmetric four-arm junction. The strategy used is to connect two arms of a junction molecule with a short tether of thymidines. These DNA molecules share a common core sequence but have different arms that are connected so that each molecule is constrained in either an antiparallel or a parallel structure. For tethered antiparallel molecules the identity of the crossover strands is determined by which arms are connected. Different arm connections gave molecules representing each of the two antiparallel crossover isomers. Two parallel molecules that differ in the length and position of the tether exhibit opposite biases in their choice of crossover strands. Thus, a physical constraint applied at a distance from the branch point can determine the conformation of a junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号