首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convenient method for the separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography (HPLC) is described. Sphingomyelin species from bovine brain and sheep and pig erythrocytes were resolved into 10-12 separate peaks on a micro -BondaPak C(18) or Nucleosil-5-C(18) reversedphase column with methanol-5 mM potassium phosphate buffer, pH 7.4, 9:1 (v/v) as the solvent. Detection was at 203-205 nm. The sphingomyelin species were primarily resolved due to specific hydrophobic interaction of their fatty acid and sphingoid chains with the alkyl ligand of the stationary phase. The retention time of the sphingomyelin species increased progressively as the number of carbon atoms in the hydrophobic chains increased in the homologous series. The presence of one double bond in the molecule reduced the retention time significantly. Introduction of a second double bond in the fatty acid side chain did not reduce the retention time to the same extent as the first double bond. The presence of a trans double bond in the sphingoid moiety increased the retention time of sphingomyelin more than did a cis double bond in the fatty acid side chain. The differential hydrophobic interaction observed between the ligand of the stationary phase and different alkyl chains of the sphingomyelin species illustrates that reversed-phase HPLC technique can be conveniently used to study the extent of relative hydrophobicity of different types of alkyl chains.-Jungalwala, F. B., V. Hayssen, J. M. Pasquini, and R. H. McCluer. Separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography.  相似文献   

2.
A method for the separation of molecular species of brain monosialogangliosides by high-performance liquid chromatography is described. GM4, GM3, GM2, and GM1 were purified from human brain and their individual molecular species were separated on a C18 reversed-phase column. Peaks were identified by mass spectrometry of the intact ganglioside, by gas-liquid chromatography of the fatty acids, and by high-performance liquid chromatography of the long chain bases. A characteristic elution sequence of molecular species permitted their identification based upon their retention times on the reversed-phase column.  相似文献   

3.
Glycerophosphoethanolamine (GPEtn) and glycerophosphoserine (GPSer) lipids were reacted with a multiplexed set of differentially isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, which place isobaric mass labels at a primary amino group. The resulting derivatized aminophospholipids were isobaric and chromatographically indistinguishable but yielded positive reporter ions (m/z 114 or 117) after collisional activation that could be used to identify and quantify individual members of the multiplex set. The chromatographic and mass spectrometric response of N-methylpiperazine amide-tagged aminophospholipids was probed using glycerophosphoethanolamine and glycerophosphoserine lipid standards. The [M+H]+ of each tagged aminophospholipid shifted 144 Da, and during collision-induced dissociation the major fragmentation ion was either m/z 114 or 117. This mode of detecting aminophospholipids was useful for an unbiased analysis of plasmalogen GPEtn lipids. Molecular species information on the esterified fatty acyl substituents was obtained by collisional activation of the [M-H]- ions. The isotope-tagged reagents were used to assess changes in the distribution of GPEtn lipids after exposure of liposomes made from phospholipids extracted from RAW 264.7 cells to Cu2+/H2O2 to illustrate the ability of these reagents to aid in the mass spectrometric identification of aminophospholipid changes that occur during biological stimuli.  相似文献   

4.
Aminophospholipid Asymmetry in Murine Synaptosomal Plasma Membrane   总被引:13,自引:10,他引:3  
The asymmetric distribution of aminophospholipids in isolated murine synaptosomal plasma membranes was determined by a chemical labeling procedure. Under nonpenetrating conditions, mouse brain synaptosomes were reacted with trinitrobenzenesulfonic acid (TNBS) to label outermonolayer aminophospholipids covalently. About 10-15% of the phosphatidylethanolamine and 20% of the phosphatidylserine were found to be in the outer monolayer of the synaptosomal plasma membrane. Furthermore, the fatty acyl group composition of the labeled phosphatidylethanolamine (outer monolayer) consisted of more saturated fatty acid than did the unlabeled phosphatidylethanolamine (inner monolayer). These results demonstrated an aminophospholipid asymmetry in synaptosomal plasma membranes which was independent of serum-lipoprotein exchange processes and also of phosphatidylethanolamine-methylatingenzymes.  相似文献   

5.
The multiplicity of phosphatidylcholines is caused by the presence of different pairs of fatty acids in their individual molecular species and at least 27 miscellaneous fatty acids were identified in phosphatidylcholines in the serum of healthy individuals by combined gas–liquid chromatography and mass spectrometry in our present experiments. A method is described for the separation and quantitation of molecular species of phosphatidylcholine in human serum. Total phosphatidylcholine is isolated from lipids extracted from the serum with chloroform–methanol (2:1) by reversed-phase liquid–liquid extraction and subjected to reversed-phase high-performance liquid chromatography with a discontinuous descending gradient of water. Separation is monitored by fluorometry (340/460 nm) and absorption at 205 nm, if required. Up to 25 different molecular species of phosphatidylcholine may be quantified with a satisfactory reproducibility (±5–8%). Data on the distribution of individual molecular species in phosphatidylcholine of 53 normal serums are presented. The method may be used for quantitation of these phospholipids also in other biological materials (cell lines, leukemic cells from patients), and on a micropreparative scale to isolate individual compounds. The speed of separation as well as a satisfactory reproducibility are its principal advantages.  相似文献   

6.
Turnover rate of individual molecular species of sphingomyelin of adult rat brain myelin and microsomal membranes was determined after an intracerebral injection of 100 Ci of [C3H3]choline. Myelin and microsomal membrane sphingomyelins were isolated from the rest of the lipids. The individual molecular species of benzoylated sphingomyelin were separated and quantitated by reversed-phase high performance liquid chromatography. All individual major molecular species of microsomal and myelin sphingomyelin had maximum incorporation at 6 and 15 days, respectively, after the injection. The specific radioactivity of all the various molecular species of both myelin and microsomal sphingomyelin declined at a similar rate after reaching a maximum. There was no significant difference in the turnover rate of short chain (16:0, 18:0) and long chain (>22:0) fatty acid containing sphingomyelin. The average apparent turnover rate of myelin and microsomal sphingomyelin molecular species was about 14–16 days for the fast pool and about 45 days for the slow pool. It is concluded that individual molecular species of sphingomyelin of myelin and microsomal membranes turned over at a similar rate. Thus, turnover rate of sphingomyelin in myelin and microsomal membranes is not affected by the fatty acyl composition of the lipid.  相似文献   

7.
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level.  相似文献   

8.
The regulation of the asymmetric distribution of aminophospholipids in mammalian cell plasma membranes is not understood at this time. One approach to determine the nature of such regulatory mechanisms is to attempt alteration of the plasma membrane phospholipid composition. Choline analogues such as N,N'-dimethylethanolamine and N-monomethylethanolamine lowered the quantity of phosphatidylethanolamine in the plasma membrane of LM fibroblasts grown in defined medium without serum. Ethanolamine supplementation increased the phosphatidylethanolamine content while ethanolamine analogues such as 2-amino-2-methyl-1-propanol, 2-amino-1-butanol, 1-aminopropanol, and 3-aminopropanol did not alter the aminophospholipid content significantly. The transverse distribution of aminophospholipids in the plasma membrane was determined by use of a chemical labelling reagent trinitrobenzenesulfonic acid. The percent phosphatidylethanolamine trinitrophenylated by trinitrobenzenesulfonate in the outer plasma membrane monolayer of LM cells supplemented with choline analogues was not altered. In contrast, ethanolamine analogue supplementation increased the percentage of aminophospholipid in the outer monolayer 2--3-fold. Ethanolamine analogue-containing phospholipids were distributed asymmetrically across the plasma membrane with 85 to 91% being located in the inner monolayer of the plasma membrane, a distribution similar to that of phosphatidylethanolamine. The fatty acyl composition of aminophospholipids in the outer monolayer was in all cases more saturated than in the corresponding phospholipids of the inner monolayer. However, choline analogues and especially the ethanolamine analogues reduced this difference. Thus, base analogues of choline and ethanolamine may alter the aminophospholipid asymmetry, the surface charge, and the acyl chain asymmetry of LM cell plasma membranes.  相似文献   

9.
The incorporation of radiolabeled arachidonic acid and saturated fatty acids into choline-linked phosphoglycerides (PC) of rabbit and human neutrophils was investigated by resolving the individual molecular species by reversed-phase high performance liquid chromatography. PC from neutrophils incubated with a mixture of [3H]arachidonic acid and [14C]stearic or [14C]palmitic acid contains both radiolabels; however, double labeling of individual molecular species is minimal. After labeling for 2 h, the [3H]arachidonate is distributed almost equally between diacyl and 1-O-alkyl-2-acyl species, but it is incorporated into diacyl species containing unlabeled stearate or palmitate at the sn-1 position. In contrast, labeled saturated fatty acids are incorporated only into diacyl species and contain predominantly oleate and linoleate at the sn-2 position. Labeled linoleate is not incorporated into ether-linked species, but is found in the same species as labeled stearate. The findings suggest that mechanisms exist in neutrophils for specific shunting of exogenous arachidonic acid into certain phospholipid molecular species and support the concept that the 1-O-alkyl-2-arachidonoyl species may be a functionally segregated pool of arachidonic acid within the PC of neutrophils.  相似文献   

10.
When aminophospholipids with only saturated and monounsaturated fatty acids esterified to the glycerol backbone were labeled with isotopically enriched N-methylpiperazine acetic acid N-hydroxysuccinimide ester reagents, it was found that they could be readily detected as N-methylpiperazine-amide-tagged aminophospholipids using a precursor scan of the stable isotope reporter ion (m/z 114-117) formed by tandem mass spectrometry/mass spectrometry. However, it was found in the current study that these precursor ion scans are not useful in determining the changes of aminophospholipids with polyunsaturated fatty acids (PUFAs) esterified to the glycerol backbone due to the presence of interfering ions in the reporter ion region. Therefore, a method was developed using tandem mass spectrometry/mass spectrometry/mass spectrometry (MS(3)) to obtain reporter ion ratios that were not distorted by interfering ions present in the collision-induced dissociation spectra of nontagged aminophospholipids with PUFAs. This new MS(3) method for N-methylpiperazine- amide-tagged aminophospholipids was used to examine the fate of diacyl, ether, or plasmalogen glycerophosphoethanolamine (GPEtn) species after exposure of human polymorphonuclear leukocytes to A23187 and granulocyte macrophage-colony-stimulating factor/formyl-methionyl-leucyl-phenylalanine stimuli, which can induce eicosanoid biosynthesis, to follow those GPEtn molecular species which were the source of arachidonic acid released. Upon stimulation of the human polymorphonuclear leukocyte, it was found that the abundant arachidonoyl GPEtn plasmalogen molecular species were uniquely reduced in relative content compared to ether or diacyl species and this subclass of GPEtn may be a source of the arachidonic acid converted to leukotrienes by the 5-lipoxygenase pathway activated in this cell.  相似文献   

11.
This work set out to optimize the detection and separation of several phospholipid molecular species on a reversed-phase column with the use of an electrospray ionization/mass spectrometry-compatible counter-ion. An application of this technique concerned a qualitative and quantitative analysis of bacterial membrane phospholipids extracted from Corynebacterium species strain 8. The phospholipid classes of strain 8 were identified as phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol, and a peculiar lipid compound, acyl phosphatidylglycerol. Most of the molecular species structures were elucidated, and regarding phosphatidylglycerol, the fatty acid positions were clearly determined with the calculation of the sn-2/sn-1 intensity ratio of the fatty acyl chain fragments.  相似文献   

12.
The relative incorporation of [3H]arachidonic acid (20:4) into individual molecular species containing 20:4 at the 2 position (18:1-20:4, 16:0-20:4 and 18:0-20:4 species) of diacyl and ether-linked glycerophosphocholine, glycerophosphoethanolamine and glycerophosphoinositol of rabbit alveolar macrophages has been measured by reversed-phase high-performance liquid chromatography (HPLC). The rate of incorporation of [3H]20:4 into the molecular species of glycerophospholipids was greatly influenced by their structures. The reversed-phase HPLC analysis allowed elucidation of the influence of structural differences, such as the nature of the polar head group, the fatty chain at the 1 position and the chemical form of the bond of the fatty chain attached at the 1 position on the uptake of [3H]20:4 by comparison of the specific radioactivities of arachidonoyl molecular species having the same structures, except that one of the three kinds of moiety was different. The specific radioactivities of the molecular species containing choline head groups were significantly higher than those containing ethanolamine and inositol moieties. The specific radioactivities of diacyl molecular species were considerably higher than those of ether-linked molecular species. The nature of the fatty chain attached at the 1 position also influenced the uptake of [3H]20:4 into glycerophospholipids. The arachidonoyl molecular species containing 18:1 at the 1 position were preferentially labelled with [3H]20:4 as compared to the corresponding 16:0-20:4 and 18:0-20:4 species either of diacyl or ether-linked glycerophospholipids. The present results suggest that the acyltransferase involved in the incorporation of 20:4 into glycerophospholipids has selectivity for the structures of glycerophospholipids and the order of selectivity of this enzyme for the arachidonoyl molecular species, deduced in the present experiments, was as follows: choline head group greater than ethanolamine and inositol groups, acyl bond greater than ether and vinyl ether bonds, 18:1 fatty chain greater than 16:0 and 18:0 fatty chains at the 1 position. Comparison of the metabolic activities of all major arachidonoyl molecular species of glycerophospholipids having a single structure is reported here for the first time.  相似文献   

13.
Abnormalities of ganglioside structure characterize the neoplastic state, and aberrant glycosylation has been implicated as underlying many new tumor ganglioside structures. However, variations in ceramide structure can also result in novel tumor gangliosides. To address systematically this aspect of ganglioside metabolism, we have initiated a study of the structures of the ceramide species of an oligosaccharide-homogeneous human tumor-derived ganglioside, GM2. The ganglioside was isolated from neuroblastoma tissue and purified by normal-phase high pressure liquid chromatography. Marked ceramide heterogeneity was observed; 18 individual ceramide species of neuroblastoma GM2 were separated by reversed-phase high pressure liquid chromatography and collected. Their structures were determined by a combination of negative- and positive-ion fast atom bombardment mass spectrometry and collisionally activated dissociation tandem mass spectrometry of the underivatized gangliosides. The striking finding was the detection of alpha-hydroxylation of a significant fraction of each of the major fatty acid species (16:0, 18:0, 20:0, 22:0, and 24:1); alpha-hydroxylated species quantitatively represented almost one-fifth of the total tumor GM2 species. Fatty acyl hydroxylation was also detected in the ceramide of several other human tumor gangliosides. In contrast, as previously known, fatty acyl hydroxylation was not detected in the normal human brain gangliosides GM3, GM2, and GM1. We propose that aberrant fatty acid alpha-hydroxylation is a novel and sometimes quantitatively significant characteristic of human tumor ganglioside metabolism.  相似文献   

14.
The transbilayer distribution of the molecular species of aminophospholipids in human red blood cell plasma membrane has been investigated using a covalent labelling technique. Separation and quantitative analysis of the molecular species of phosphatidylethanolamine (PE) and phosphatidylserine (PS) was performed using high-performance liquid chromatography with UV detection of the trinitrophenyl derivatives obtained after reaction with trinitrobenzenesulfonic acid (TNBS). When the molecular species distribution obtained with intact cells was compared to that of the whole membrane, a molecular species asymmetry was evident. This phenomenon was most clearly evident when the reaction was performed at low temperatures (0 degrees C) and was obscured by the excessive labelling or probe permeation associated with higher temperatures or longer incubation times. The monoene species were enriched in the outer leaflet, they comprised about 30% of the PE species in this leaflet. The polyunsaturates were preferentially localized in the inner leaflet and this was true of the arachidonyl species in particular as they represented up to 35% of this pool. The w-3 polyunsaturated fatty acids displayed a preferential localization in the plasmalogen subclass in comparison to the diacyl fraction, i.e., they comprised about 58 of the former and 42% of the latter subclass of cellular PE w-3 species. Data concerning the separation, identification and quantification of PS molecular species in human erythrocytes is also presented. The internal localization of the polyunsaturated species as well as the compartmentalization of the w-3 and w-6 pools will have metabolic, structural and physical implications for membrane function.  相似文献   

15.
Rats fed with a fat-free or an olive oil-rich diet were employed to compare the response of two chromatographic techniques in the determination of rat liver triglyceride (TG) molecular species composition. Gas–liquid chromatography (GLC) on polarizable liquid phase and reversed-phase high-performance liquid chromatography (RP-HPLC) have been commonly employed for TG analysis, obtaining a similar number of chromatographic peaks when used for animal tissue TG determination. In the present study similar results were achieved with regard to most relevant chromatographic peaks, however, important differences were found in the content of minor TGs. Indeed, RP-HPLC permitted separation of long chain polyunsaturated fatty acids, which were not detected by GLC, while the latter technique reported a higher number of myristoyl-containing TG species. RP-HPLC analysis reported a greater number of TGs, with more similarity to a random composition, made up from the liver fatty acid composition. Therefore, it was concluded that utilization of both techniques would be helpful for liver TG analysis as the use of only one of them does not provide a complete profile of liver TGs. Nevertheless RP-HPLC seems to be more useful for this purpose since revealed a more extensive profile.  相似文献   

16.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

17.
9-Diazomethylanthracene reacts with carboxyl groups to give an ester derivative which can be used as either a fluorescence or ultraviolet label for fatty acid analysis by high-pressure liquid chromatography. The limit of detection by ultraviolet spectroscopy was demonstrated to be approximately 150 pg/μl of the individual fatty acid esters. Fluorescence detection showed a limit of approximately 15 pg/μl. The fluorescence detector response was linear from 0.49 to 14.2 pmol/μl. Thus, derivatization of fatty acids with 9-diazomethylanthracene provides a new and very sensitive method for the quantification of picomole quantities of fatty acids by high-pressure liquid chromatographic techniques using either ultraviolet or fluorescence detection.  相似文献   

18.
Hydrophobic interaction chromatography fractionated the lipoteichoic acid of Enterococcus faecalis into species of decreasing poly(glycerophosphate) chain length and decreasing extent of substitution with alpha-kojibiosyl residues (Glcp alpha 1----2Glcp alpha 1----). The chain length varied between 14 and 33 glycerophosphate residues per lipid anchor, the extent of glycosylation between 0.18 and 0.44 mol of alpha-kojibiosyl residues per mole of phosphorus, and, accordingly, the number of alpha-kojibiosyl substituents per chain between 3 and 15. Almost identical values were obtained when the same lipoteichoic acid was chromatographed on DEAE-Sephadex and concanavalin A, which separate molecular species according to increasing number of phosphate groups and alpha-kojibiosyl residues, respectively. Species from all three columns, which were identical in chain length and glycosylation, also had similar fatty acid patterns. These results prove the suitability of all three procedures for species analysis. One advantage of hydrophobic interaction chromatography over the other two procedures lies in its broader applicability since it is not dependent on negative charges or specifically binding oligosaccharide structures. Another advantage is the capacity of hydrophobic interaction chromatography to separate molecular species differing in the number of fatty acids [W. Fischer, H.U. Koch, and R. Haas (1983) Eur. J. Biochem. 133, 523-530] and render them accessible to molecular analyses.  相似文献   

19.
Methods for the efficient use of limiting amounts of fatty acid probes in the synthesis of individual molecular species of plasmenylcholine have been developed. Plasmenylcholine molecular species were synthesized through acylation of homogeneous 1-O-(Z)-hexadec-1'-enyl-sn-glycero-3-phosphocholine utilizing fatty acid anhydrides generated in situ from combined pools of reactant and recycled fatty acids by repeated addition of small amounts (10 mol%) of N,N'-dicyclohexylcarbodiimide. The efficient generation of reactive anhydrides was accomplished through minimizing irreversible formation of N-acyl urea adducts by maintaining a persistent molar excess of fatty acid (with respect to carbodiimide) during the entire reaction time course. The synthesis of multiple different sn-2 labeled plasmenylcholine probes for utilization in fluorescence, ESR, or 2H NMR spectroscopy as well as isotopically labeled plasmenylcholines for metabolic studies has been achieved in good yield (40-50% of theoretical yield based on fatty acid) by these methods. Rapid and effective purification methods utilizing high-performance liquid chromatography were developed for both large- and small-scale purifications of individual reaction mixtures which collectively resulted in the isolation of homogeneous plasmenylcholine molecular species in high yield from limiting amounts of fatty acid probes.  相似文献   

20.
The effect of aminophospholipid glycation on lipid order and lipid bilayer hydration was investigated using time-resolved fluorescence spectroscopy. The changes of lipid bilayer hydration were estimated both from its effect on the fluorescence lifetime of The 1-[4-(trimethylammonium)-phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and 1,6-diphenylhexa-1,3,5-triene (DPH) and using solvatochromic shift studies with 1-anilinonaphthalene-8-sulfonic acid. The head-group and acyl chain order were determined from time-resolved fluorescence anisotropy measurements of the TMA-DPH and DPH. The suspensions of small unilamellar vesicles (with phosphatidylethanolamine/phosphatidylcholine molar ratio 1:2.33) were incubated with glyceraldehyde and it was found that aminophospholipids react with glyceraldehyde to form products with the absorbance and the fluorescence properties typical for protein advanced glycation end products. The lipid glycation was accompanied by the progressive oxidative modification of unsaturated fatty acid residues. It was found that aminophospholipid glycation increased the head-group hydration and lipid order in both regions of the membrane. The lipid oxidation accompanying the lipid glycation affected mainly the lipid order, while the effect on the lipid hydration was small. The increase in the lipid order was presumably the result of two effects: (1) the modification of head-groups of phosphatidylethanolamine by glycation; and (2) the degradation of unsaturated fatty acid residues by oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号