首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ESR spectrum of the short-lived radicals derived from 2-deoxy-D-ribose by the reaction with the hydroxyl radical (HO*) was measured using a rapid flow method. A dielectric mixing resonator was used for the measurement, which made it possible to measure the highly sensitive ESR spectra of the radicals with a lifetime of the order of milliseconds. A complex spectrum was obtained and the spectral simulation was done to show that it was the superposition of the signals due to five radicals (I-V). Three of them were those formed by the dehydrogenation with the HO* at C-1 (I), C-3 (II), and C-4 (III) positions of the 2-deoxy-D-ribose molecule. The other two (IV and V) were carbonyl-conjugated radicals formed by the elimination of a water molecule from III and II. The results showed that dehydrogenation occurred randomly at the positions where hydroxyl groups are attached, but the most preferred position was C-3 and the radical position moved from C-3 to C-4 by the elimination of water molecule.  相似文献   

2.
Saponins from Medicago species are glycosidic compounds with an aglycone moiety formed through the enzymatic cyclization of 2,3-oxidosqualene by the β-amyrin cyclase. All the saponins from Medicago genus possess the triterpenic pentacyclic nucleus belonging to the class of β-amyrin. The so formed β-amyrin skeleton can be further modified by oxidative reactions, mediated by cytochromes belonging to the class of cytochrome P450, to give different saponin compounds, characterized by the presence of hydroxyl or carboxyl groups located in specific positions of the triterpenic skeleton. Based on the position and the oxidation degree of the substituents, it is possible to distinguish two groups of saponins (sapogenins) in Medicago spp: (1) sapogenins possessing an OH group on C-24 (soyasapogenols A, B and E) without any substituent at the C-28 atom, and (2) sapogenins possessing the COOH group at C-28 that are associated with different oxidation degrees (zero, OH, CHO, COOH) at C-23. These results seem to indicate that the oxidation at C-24 and the presence of the COOH group at C-28 are mutually exclusive. The subdivision in the aglycone moiety is reflected also in the sugar moiety, operated by glycosyltranferases, as the saponins of the two groups differ for the position and the nature of the sugar chains. Based on these findings, new considerations on the biosynthesis of saponins in the genus Medicago can be drawn and a biosynthetic scheme is proposed.  相似文献   

3.
The regenerating activities of chemically modified anionic bacterial polysaccharides by O-sulfonation were investigated using a in vivo model of rat injured muscle regeneration. Glucuronan (GA), a linear homopolysaccharide of -->4)-beta-D-GlcpA-(1--> residues partially acetylated at the C-3 and/or the C-2 position, and glucoglucuronan (GGA), a linear heteropolysaccharide of -->3)-beta-D-GlcpA-(1-->4)-beta-D-Glcp-(1--> residues were sulfated. SO3-DMF sulfatation complex provided polysaccharides with different sulfur contents, however, a depolymerization occurred because we did not use large excess of pyridine to obtain pure modified polysaccharides. A regenerating activity on injured extensor digitorum longus (EDL) muscles on rats was obtained with these two sulfated anionic polymers. The position of sulfate groups on glucoglucuronan (primary or secondary alcohol) seems to have no influence on the biological activity by opposition to the degree of sulfatation both for the glucuronans and the glucoglucuronans. The yield of acetate groups in the glucuronan polymer modulated the specific activity.  相似文献   

4.
The lactose transport protein (LacS) of Streptococcus thermophilus catalyzes the uptake of lactose in an exchange reaction with intracellularly formed galactose. The interactions between the substrate and the cytoplasmic and extracellular binding site of LacS have been characterized by assaying binding and transport of a range of sugars in proteoliposomes, in which the purified protein was reconstituted with a unidirectional orientation. Specificity for galactoside binding is given by the spatial configuration of the C-2, C-3, C-4, and C-6 hydroxyl groups of the galactose moiety. Except for a C-4 methoxy substitution, replacement of the hydroxyl groups for bulkier groups is not tolerated at these positions. Large hydrophobic or hydrophilic substitutions on the galactose C-1 alpha or beta position did not impair transport. In fact, the hydrophobic groups increased the binding affinity but decreased transport rates compared with galactose. Binding and transport characteristics of deoxygalactosides from either side of the membrane showed that the cytoplasmic and extracellular binding site interact differently with galactose. Compared with galactose, the IC(50) values for 2-deoxy- and 6-deoxygalactose at the cytoplasmic binding site were increased 150- and 20-fold, respectively, whereas they were the same at the extracellular binding site. From these and other experiments, we conclude that the binding sites and translocation pathway of LacS are spacious along the C-1 to C-4 axis of the galactose moiety and are restricted along the C-2 to C-6 axis. The differences in affinity at the cytoplasmic and extracellular binding site ensure that the transport via LacS is highly asymmetrical for the two opposing directions of translocation.  相似文献   

5.
The substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase from a mouse mastocytoma was examined to determine the effects of N-acetyl and O-sulfate groups on substrate recognition by the enzyme. [5-3H]Glucuronosyl-labeled heparosan N-sulfate was prepared enzymatically and was modified chemically by partial N-desulfation and N-acetylation. After enzymatic release of tritium, the location of remaining label was determined by deaminative cleavage and analysis of resulting di-, tetra-, and higher oligosaccharides. This analysis indicated that a D-glucuronosyl residue is recognized as a substrate if it is linked at C-1 to an N-acetylated glucosamine residue and at C-4 to an N-sulfated unit. However, the reverse structure, in which the D-glucuronosyl moiety is bound at C-1 to an N-sulfated residue and at C-4 to N-acetylated glucosamine, is not a substrate. Similar studies with O-sulfated heparin intermediates showed that O-sulfate groups either at C-2 of the L-iduronosyl moieties or at C-6 of vicinal D-glucosaminyl moieties prevent 5-epimerization. These findings were confirmed by studies of the reverse reaction, in which tritium was incorporated from 3H2O into partially O-desulfated heparin and the location of incorporated radioactivity was determined. These and more direct experiments corroborated the previous conclusion that the L-iduronosyl moieties are formed after N-sulfation but before O-sulfation. Assessment of the influence of substrate size on the reaction further showed that a large substrate is preferred; an octasaccharide released tritium at a rate approximately 10% of that observed for the parent polysaccharide, and some release occurred also with smaller oligosaccharides.  相似文献   

6.
Ceramides act as a second messenger of the apoptotic signaling process. The allylic alcohol portion comprising the C-3, C-4, and C-5 carbons is essential for this function. The suggestion has been made that this alcohol moiety is oxidized in mitochondria to a carbonyl moiety, with the generation of reactive oxygen species. However, there is no established precedent for the apoptotic performance of 3-ketoceramides thus presumed. In this work, we have synthesized three different types of short-chain 3-ketoceramides, that is, (2S,4E)-2-acetylamino-3-oxo-4-octadecen-1-ol (A), (2S,4E,6E)-2-acetylamino-3-oxo-4,6-octadecadien-1-ol (B), and (2S,4E)-2-acetylamino-1-methoxy-3-oxo-4-octadecene (C), and demonstrated that these 3-ketoceramides are capable of inducing effective apoptosis in human leukemia HL-60 cells. In particular, the two monoenoic compounds, A and C, are far more powerful than the corresponding alcoholic analogue, N-acetyl-D-erythro-sphingosine. Observations of DNA fragmentation, caspase-3 activation, and cytochrome c release from mitochondria provide substantiated evidence for mitochondrial apoptosis and the effects of exogenous glutathione on these phenomena are also discussed.  相似文献   

7.
Ceramides containing phytosphingosine as base and one of the fatty acids 16:0, 18:0, 20:0, 22:0, 23:0, and 24:0, were prepared by direct coupling in the presence of a mixed carbodiimide. The ceramides were analyzed as the 1,3,4-tri-O-trimethylsilyl ether derivatives by gas-liquid chromatography-mass spectrometry. Gas chromatographic data is presented, and structures of mass spectral ions are suggested. The structures are supported by mass spectra of the homologous ceramides, by deuterium-labeling experiments, and by high resolution mass spectrometry. Some ions, formed by cleavage between C-3 and C-4 in the long-chain base, indicate the phytosphingosine nature of the ceramide.  相似文献   

8.
The design and synthesis of 16-membered macrolides modified at the C-3 position are described. Starting from fully protected intermediate (5), appropriate modifications including Heck reaction were performed to furnish 3-O-(3-aryl-2-propenyl)leucomycin A(7) analogues (9a-9m). These leucomycin A(7) derivatives showed improved in vitro antibacterial activities against clinically important pathogens including erythromycin-resistant Streptococcus pneumoniae (ERSP). SAR analysis of derivatives modified at the C-3 and C-3' positions suggested that single modification at C-3 or C-3' was effective for in vitro antibacterial activity.  相似文献   

9.
Zhang Z  Li S 《Phytochemistry》2007,68(15):2075-2086
Continued chemical investigation on the fruits of North American Aesculus pavia L. resulted in the isolation and identification of 13 polyhydroxyoleanene pentacyclic triterpenoid saponins, named aesculiosides IIe-IIk (1-7), and IIIa-IIIf (8-13), together with 18 known compounds: aesculiosides Ia-Ie (14-18), IIa-IId (19-22), IVa-IVc (23-25), 3-O-[beta-D-galactopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,15 alpha,16 alpha,21 beta,22 alpha,28-hexahydroxyolean-12-ene (26), 3-O-[beta-D-glucopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,16 alpha,21 beta,22 alpha,24 beta,28-hexahydroxyolean-12-ene (27), 3-O-[beta-D-galactopyranosyl(1-->2)]-alpha-L-arabinofuranosyl(1-->3)-beta-D-glucuronopyranosyl-21,22-O-diangeloyl-3beta,16 alpha,21 beta,22 alpha,28-pentahydroxyolean-12-ene (28), R(1)-barrigenol (29), scopolin (30), and 5-methoxyscopolin (31). The structures of these compounds were elucidated by spectroscopic and chemical analyses. Compounds 14-22 and 26-28 were tested in vitro for their activity against 59 cell lines from nine different human cancers including leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast. It was found that compounds with two-acyl groups at C-21 and C-22 had cytotoxic activity for all cell lines tested with GI(50) 0.175-8.71 microM, while compounds without acyl groups at C-21 and C-22 had weak or no cytotoxic activity. These results suggest that the acyl groups at C-21 and C-22 are essential for their activity.  相似文献   

10.
Previous work showed that random mutagenesis produced a mutant of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 containing the V106A substitution in the hydroxylase -subunit (TomA3) that changed the color of the cell suspension from wild-type brown to green in rich medium. Here, DNA shuffling was used to isolate a random TOM mutant that turned blue due to mutation TomA3 A113V. To better understand the TOM reaction mechanism, we studied the specificity of indole hydroxylation using a spectrum of colored TOM mutants expressed in Escherichia coli TG1 and formed as a result of saturation mutagenesis at TomA3 positions A113 and V106. Colonies expressing these altered enzymes ranged in color from blue through green and purple to orange; and the enzyme products were identified using thin-layer chromatography, high performance liquid chromatography, and liquid chromatography–mass spectroscopy. Derived from the single TOM template, enzymes were identified that produced primarily isoindigo (wild-type TOM), indigo (A113V), indirubin (A113I), and isatin (A113H and V106A/A113G). The discovery that wild-type TOM formed isoindigo via C-2 hydroxylation of the indole pyrrole ring makes this the first oxygenase shown to form this compound. Variant TOM A113G was unable to form indigo, indirubin, or isoindigo (did not hydroxylate the indole pyrrole ring), but produced 4-hydroxyindole and unknown yellow compounds from C-4 hydroxylation of the indole benzene ring. Mutations at V106 in addition to A113G restored C-3 indole oxidation, so along with C-2 indole oxidation, isatin, indigo, and indirubin were formed. Other TomA3 V106/A113 mutants with hydrophobic, polar, or charged amino acids in place of the Val and/or Ala residues hydroxylated indole at the C-3 and C-2 positions, forming isatin, indigo, and indirubin in a variety of distributions. Hence, for the first time, a single enzyme was genetically modified to produce a wide range of colors from indole.  相似文献   

11.
The structural requirements for binding to the glucose/sorbose-transport system in the human erythrocyte were explored by measuring the inhibition constants, K(i), for specifically substituted analogues of d-glucose when l-sorbose was the penetrating sugar. Derivatives in which a hydroxyl group in the d-gluco configuration was inverted, or replaced by a hydrogen atom, at C-1, C-2, C-3, C-4 or C-6 of the d-glucose molecule, all bound to the carrier, confirming that no single hydroxyl group is essential for binding to the carrier. The binding and transport of 1-deoxy-d-glucose confirmed that the sugars bind in the pyranose form. The relative inhibition constants of d-glucose and its deoxy, epimeric and fluorinated analogues are consistent with the combination of beta-d-glucopyranose with the carrier by hydrogen bonds at C-1, C-3, probably C-4, and possibly C-6 of the sugar. Both polar and non-polar substituents at C-6 enhance the affinity of d-glucose derivatives relative to d-xylose, and d-galactose derivatives relative to l-arabinose, and it is suggested that the carrier region around C-6 of the sugar may contain both hydrophobic and polar binding groups. The spatial requirements at C-1, C-2, C-3, C-4 and C-6 were explored by comparing the relative binding of d-glucose and its halogeno and O-alkyl substituents. The carrier protein closely approaches the sugar except at C-3 in the d-gluco configuration, C-4 and C-6. d-Glucal was a good inhibitor, showing that a strict chair form is not essential for binding. 3-O-(2',3'-Epoxypropyl)-d-glucose, a potential substrate-directed alkylating agent, bound to the carrier, but did not inactivate it.  相似文献   

12.
Steroidal saponins from the leaves of Cestrum sendtenerianum   总被引:3,自引:0,他引:3  
Five steroidal saponins were isolated from the EtOH extract of Cestrium sendtenerianum (Solanaceae), as confirmed by detailed analysis of their 1H, 13C, and two-dimensional NMR spectral data, and by the results of hydrolytic cleavage. The saponins were revealed to contain three hydroxyl groups at the C-1beta, C-2alpha, and C-3beta positions in the spirostanol skeleton, and to bear a di- or triglycoside at C-3 as the common structural features. One of the compounds, a spirostanol triglycoside, showed weak cytotoxic activity on HL-60 human promyelocytic leukemia cells, with an IC50 value of 7.7 microg/ml.  相似文献   

13.
1. Androgens, corticoids, gestagens, estrogens and related steroids are effective quenchers of the intrinsic fluorescence of bovine serum albumin. The quenching effect involves the formation of a steroid albumin complex which formation constant (Kf) and free energy of formation (delta G 0) can be determined by fluorescence titration. The fluorimetrically determined delta G 0 values range from -6.5 to -7.5 kcal/mol. 2. 5 alpha-Androstane and 5 alpha-pregnane are effective quenchers of albumin fluorescence, in accord with the essentially hydrophobic nature of the steroid-albumin interaction. Introduction of hydroxy or oxo groups in 5 alpha-androstane decreases the fluorescence quenching action, but the effect of each group declines when other polar groups are present in the steroid molecule. Similar effects occur with 5 alpha-pregnane except that 20-hydroxy (or oxo) duo-polar derivatives are more effective than the parent hydrocarbon. 3. Comparison of delta G 0 values for steroids differing in a single grouping shows that the steroid-albumin interaction is increased by (a) the benzenoid A-ring; (b) sulfate or carboxylate ions in the vicinity of C-3; (c) the 3-oxo group in place of the 3 alpha-hydroxyl (with 5 beta-pregnane derivatives; not with 5 alpha-androstane derivatives); (d) 17 beta-acetyl or 17 beta-hydroxyethyl residues; (e) acetylated or propionated 17 beta-hydroxy groups; (f) acetylated or methylated hydroxy groups at the C-3 of estrogens; (g) delta 5 and delta 6 double bonds; and (h) the 19 beta-methyl group. The maximal variation of delta G 0 determined by affinity-enhancing groups is -0.8 kcal/mol. Conversely, the steroid-albumin interaction is decreased by introduction of (i) oxygen atoms at C-3, C-6, C-11, C-16, and C-17; (j) 17 alpha-ethynyl and 17 alpha-acetoxyl residues; (k) benzoylated or hexahydro-benzoylated beta-hydroxy groups at C-17; (l) acetylated and benzoylated hydroxy groups at C-3; and delta 1 (conjugated) double bond. Oxo groups at C-3, C-6, C-16 and the 16 alpha, 17 alpha-epoxy group are more effective than the corresponding alpha-hydroxyl in decreasing affinity, while at C-11 and C-17, the alpha-hydroxyl is more effective than the beta-hydroxyl and the oxo group. The effect of substituents is influenced by the whole molecular structure, particularly, by the stereostructure at the A/B juncture, and the presence of an oxo group at C-17. 4. The stereospecific effect of substituents at different positions in the steroid molecule suggests that with non-aromatic, A/B trans (planar) steroids, binding to albumin primarily involves the (alpha) rear surface of the B-, C- and D-ring, and possibly, the 17 beta-side chain. With estrogens and A/B cis (dihedral) steroids, the benzenoid A-ring and electron attracting groups at C-3, respectively, may participate in binding.  相似文献   

14.
The specificity of acceptor binding to the active site of dextransucrase was studied by using alpha-methyl-D-glucopyranoside analogs modified at C-2, C-3, and C-4 positions by (a) inversion of the hydroxyl group and (b) replacement of the hydroxyl group with hydrogen. 2-Deoxy-alpha-methyl-D-glucopyranoside was synthesized from 2-deoxyglucose; 3- and 4-deoxy-alpha-methyl-D-glucopyranosides were synthesized from alpha-methyl-D-glucopyranoside; and alpha-methyl-D-allopyranoside was synthesized from D-glucose. The analogs were incubated with [14C]sucrose and dextransucrase, and the products were separated by thin-layer chromatography and quantitated by liquid scintillation spectrometry. Structures of the acceptor products were determined by methylation analyses and optical rotation. The relative effectiveness of the acceptor analogs in decreasing order were 2-deoxy, 2-inverted, 3-deoxy, 3-inverted, 4-inverted, and 4-deoxy. The enzyme transfers D-glucopyranose to the C-6 hydroxyl of analogs modified at C-2 and C-3, to the C-4 hydroxyl of 4-inverted, and to the C-3 hydroxyl of 4-deoxy analogs of alpha-methyl-D-glucopyranoside. The data indicate that the hydroxyl group at C-2 is not as important for acceptor binding as the hydroxyl groups at C-3 and C-4. The hydroxyl group at C-4 is particularly important as it determines the binding orientation of the alpha-methyl-D-glucopyranoside ring.  相似文献   

15.
This work describes the synthesis of a series of sialylmimetic neoglycoconjugates represented by 1,4-disubstituted 1,2,3-triazole-sialic acid derivatives containing galactose modified at either C-1 or C-6 positions, glucose or gulose at C-3 position, and by the amino acid derivative 1,2,3-triazole fused threonine-3-O-galactose as potential TcTS inhibitors and anti-trypanosomal agents. This series was obtained by Cu(I)-catalysed azide-alkyne cycloaddition reaction ('click chemistry') between the azido-functionalized sugars 1-N(3)-Gal (commercial), 6-N(3)-Gal, 3-N(3)-Glc and 3-N(3)-Gul with the corresponding alkyne-based 2-propynyl-sialic acid, as well as by click chemistry reaction between the amino acid N(3)-ThrOBn with 3-O-propynyl-GalOMe. The 1,2,3-triazole linked sialic acid-6-O-galactose and the sialic acid-galactopyranoside showed high Trypanosoma cruzitrans-sialidase (TcTS) inhibitory activity at 1.0mM (approx. 90%), whilst only the former displayed relevant trypanocidal activity (IC(50) 260μM). These results highlight the 1,2,3-triazole linked sialic acid-6-O-galactose as a prototype for further design of new neoglycoconjugates against Chagas' disease.  相似文献   

16.
The global production of the greenhouse gas methane by methanogenic archaea reaches 1 billion tons per annum. The final reaction releasing methane is catalyzed by the enzyme methyl-coenzyme M reductase. The crystal structure of methyl-coenzyme M reductase from Methanobacterium thermoautotrophicum revealed the presence of five modified amino acids within the alpha-subunit and near the active site region. Four of these modifications were C-, N-, and S-methylations, two of which, 2-(S)-methylglutamine and 5-(S)-methylarginine, have never been encountered before. We have now confirmed these modifications by mass spectrometry of chymotryptic peptides. With methyl-coenzyme M reductase purified from cells grown in the presence of L-[methyl-D(3)]methionine, it was shown that the methyl groups of the modified amino acids are derived from the methyl group of methionine rather than from methyl-coenzyme M, an intermediate in methane formation. The D(3) labeling pattern was found to be qualitatively and quantitatively the same as in the two methyl groups of the methanogenic coenzyme F(430), which are known to be introduced via S-adenosylmethionine. From the results, it is concluded that the methyl groups of the modified amino acids in methyl-coenzyme M reductase are biosynthetically introduced by an S-adenosylmethionine-dependent post-translational modification. A mechanism for the methylation of glutamine at C-2 and of arginine at C-5 is discussed.  相似文献   

17.
Several steroid analogues containing conjugated acetylenic ketone groups as part of a seco-ring structure or as substituents on the intact steroid system are irreversible inhibitors of delta 5-3-oxo steroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Thus 10 beta-(1-oxoprop-2-ynyl)oestr-4-ene-3,17-dione (I), 5,10-seco-oestr-4-yne-3,10,17-trione (II), 17 beta-hydroxy-5,10-seco-oestr-4-yne-3,10-dione (III) and 17 beta-(1-oxoprop-2-ynyl)androst-4-en-3-one (IV) irreversibly inactivate isomerase in a time-dependent manner. In all cases saturation kinetics are observed. Protection against inactivation is afforded by the powerful competitive inhibitor 19-nortestosterone. The inhibition constants (Ki) for 19-nortestosterone obtained from such experiments are in good agreement with those determined from conventional competitive-inhibition studies of enzyme activity. These compounds thus appear to be active-site directed. In every case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond probably had formed between the steroid and enzyme. Compound (I) is a very potent inhibitor of isomerase [Ki = 66.0 microM and k+2 = 12.5 x 10(-3) s-1 (where Ki is the dissociation constant of the reversible enzyme-inhibitor complex and k+2 is the rate constant for the inactivation reaction of the enzyme-inhibitor complex)] giving half-lives of inactivation of 30-45 s at saturation. It is argued that the basic-amino-acid residue that abstracts the intramolecularly transferred 4 beta-proton in the reaction mechanism could form a Michael-addition product with compound (I). In contrast, although compound (IV) has a lower inhibition constant (Ki = 14.5 microM), it is a relatively poor alkylating agent (k+2 = 0.13 x 10(-3) s-1). If the conjugated acetylenic ketone groups are replaced by alpha-hydroxyacetylene groups, the resultant analogues of steroids (I)-(IV) are reversible competitive inhibitors with Ki values in the range 27-350 microM. The enzyme binds steroids in the C19 series with functionalized acetylenic substituents at C-17 in preference to steroids in the C18 series bearing similar groups in the ring structure or as C-10 substituents. In the 5,10-seco-steroid series the presence of hydroxy groups at both C-3 and C-17 is deleterious to binding by the enzyme.  相似文献   

18.
R Bhat  A Marx  C Galanos    R S Conrad 《Journal of bacteriology》1990,172(12):6631-6636
Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.  相似文献   

19.
The sulfated agaran isolated by water extraction from the red seaweed, Acanthophora spicifera (Rhodomelaceae, Ceramiales), is made up of A-units highly substituted with sulfate groups on C-2 (28-30%), sulfates on C-2 and 4,6-O-(1'-carboxyethylidene) groups (9-15%), and only the C-2 sulfate groups (5-8%) with small amounts of C-6 sulfate, 6-O-methyl, and nonsubstituted residues. B-units are formed mainly by 3,6-anhydro-alpha-L-galactose (15-16%) and its precursor, alpha-L-galactose 6-sulfate (10-17%), together with lesser amounts of 3,6-anhydro-alpha-L-galactose 2-sulfate, alpha-L-galactose 2,6-disulfate, alpha-L-galactose 2,3,6-tri-sulfate, alpha-L-galactose 2,6-disulfate 3-xylose, 2-O-methyl-alpha-L-galactose, and unsubstituted alpha-L-galactose. Small, but significant quantities of beta-D-xylose were found in all the fractions, together with small amounts to traces of D-glucose. Some of the fractions have high antiviral activity. Attempts to correlate structure and antiviral activity in agarans are presented.  相似文献   

20.
Pregnenolone and dehydroepiandrosterone accumulate in brain as sulfate and fatty acid esters and unconjugated steroids. The steroid fatty acid ester-synthesizing activity was investigated in rat brain microsomes. Endogenous fatty acids in the microsomal fraction were used for the esterification of steroids. The enzyme system had a pH optimum of 4.5 in acetate buffer with [3H]dehydroepiandrosterone as substrate. The apparent Km was 9.2 +/- 3.1 x 10(-5) M and Vmax was 18.6 +/- 3.4 nmol/h/mg protein (mean +/- SEM). The inhibition constants of pregnenolone and testosterone were 123 and 64 microM, respectively. Results were compatible with a competitive type of inhibition. A high level of synthetic activity was found in the brain of 1- to 3-week-old male rats, which rapidly decreased with aging. Saponification of purified [3H]pregnenolone esters yielded pregnenolone and a mixture of palmitate, oleate, linoleate, stearate, and myristate as the predominant fatty acids. Contrasting with the high rates of esterification of several radioactive delta 5-3 beta-hydroxysteroids or 17 beta-hydroxysteroids, no fatty acid esters of either cholesterol, epitestosterone (with a hydroxyl group at position C-17 alpha), or corticosterone (with hydroxyl groups at C-21 and C-11 beta) were formed in the same incubation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号