首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual members of the serine-arginine (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) A/B families of proteins have antagonistic effects in regulating alternative splicing. Although hnRNP A1 accumulates predominantly in the nucleus, it shuttles continuously between the nucleus and the cytoplasm. Some but not all SR proteins also undergo nucleo-cytoplasmic shuttling, which is affected by phosphorylation of their serine/arginine (RS)-rich domain. The signaling mechanisms that control the subcellular localization of these proteins are unknown. We show that exposure of NIH-3T3 and SV-40 transformed green monkey kidney (COS) cells to stress stimuli such as osmotic shock or UVC irradiation, but not to mitogenic activators such as PDGF or EGF, results in a marked cytoplasmic accumulation of hnRNP A1, concomitant with an increase in its phosphorylation. These effects are mediated by the MKK(3/6)-p38 pathway, and moreover, p38 activation is necessary and sufficient for the induction of hnRNP A1 cytoplasmic accumulation. The stress-induced increase in the cytoplasmic levels of hnRNP A/B proteins and the concomitant decrease in their nuclear abundance are paralleled by changes in the alternative splicing pattern of an adenovirus E1A pre-mRNA splicing reporter. These results suggest the intriguing possibility that signaling mechanisms regulate pre-mRNA splicing in vivo by influencing the subcellular distribution of splicing factors.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Li Y  Chu JS  Kurpinski K  Li X  Bautista DM  Yang L  Sung KL  Li S 《Biophysical journal》2011,100(8):1902-1909
Histone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation. Bone marrow mesenchymal stem cells (MSCs) were cultured on elastic membranes patterned with parallel microgrooves 10 μm wide that kept MSCs aligned along the axis of the grooves. Compared with MSCs on an unpatterned substrate, MSCs on microgrooves had elongated nuclear shape, a decrease in HDAC activity, and an increase of histone acetylation. To investigate anisotropic mechanical sensing by MSCs, cells on the elastic micropatterned membranes were subjected to static uniaxial mechanical compression or stretch in the direction parallel or perpendicular to the microgrooves. Among the four types of loads, compression or stretch perpendicular to the microgrooves caused a decrease in HDAC activity, accompanied by the increase in histone acetylation and slight changes of nuclear shape. Knocking down nuclear matrix protein lamin A/C abolished mechanical strain-induced changes in HDAC activity. These results demonstrate that micropattern and mechanical strain on the substrate can modulate nuclear shape, HDAC activity, and histone acetylation in an anisotropic manner and that nuclear matrix mediates mechanotransduction. These findings reveal a new mechanism, to our knowledge, by which extracellular biophysical signals are translated into biochemical signaling events in the nucleus, and they will have significant impact in the area of mechanobiology and mechanotransduction.  相似文献   

9.
Protein acetylation modification has been implicated in many cellular processes but the direct evidence for the involvement of protein acetylation in signal transduction is very limited. In the present study, we found that an alkylating agent methyl methanesulfonate (MMS) induces a robust and reversible hyperacetylation of both cytoplasmic and nuclear proteins during the early phase of the cellular response to MMS. Notably, the acetylation level upon MMS treatment was strongly correlated with the susceptibility of cancer cells, and the enhancement of MMS-induced acetylation by histone deacetylase (HDAC) inhibitors was shown to increase the cellular susceptibility. These results suggest protein acetylation is important for the cell death signal transduction pathway and indicate that the use of HDAC inhibitors for the treatment of cancer is relevant.  相似文献   

10.
It has been known since the early 1970s that nuclear receptor complexes bind DNA in association with coregulatory proteins. Characterization of these nuclear receptor coregulators has revealed diverse enzymatic activities that temporally and spatially coordinate nuclear receptor activity within the context of local chromatin in response to diverse hormone signals. Chromatin-modifying proteins, which dictate the higher-order chromatin structure in which DNA is packaged, in turn orchestrate orderly recruitment of nuclear receptor complexes. Modifications of histones include acetylation, methylation, phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, deimination, and proline isomerization. At this time, we understand how a subset of these modifications regulates nuclear receptor signaling. However, the effects, particularly of acetylation and demethylation, are profound. The finding that nuclear receptors are directly acetylated and that acetylation in turn directly regulates contact-independent growth has broad therapeutic implications. Studies over the past 7 yr have led to the understanding that nuclear receptor acetylation is a conserved function, regulating diverse nuclear receptor activity. Furthermore, we now know that acetylation of multiple and distinct substrates within nuclear receptor signaling pathways, form an acetylation signaling network from the cell surface to the nucleus. The finding that nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases, the sirtuins, are capable of deacetylating nuclear receptors provides a new level of complexity in the control of nuclear receptor activity in which local intracellular concentrations of NAD may regulate nuclear receptor physiology.  相似文献   

11.
Dog thyroid epithelial cells in primary culture constitute a model of positive control of DNA synthesis initiation and GO-S prereplicative phase progression by cyclic AMP as a second messenger for TSH. In its early steps, this mitogenic control is quite distinct from cyclic AMP-independent mitogenic cascades elicited by growth factors. We demonstrate here that TSH (cyclic AMP) and EGF + serum (cyclic AMP-independent) stimulations cooperate and finally converge on proteins that control the cell cycle machinery. This convergence included a common induction of the expression of cyclin A and p34cdc2, and to a lesser extent of p33/38cdk2, which was already expressed in quiescent thyroid cells, and common changes of cdc2 and CDK2 phosphorylations as evidenced by electrophoretic mobility shifts. Kinetic differences in these processes after stimulation by TSH or EGF + serum or by these factors in combination correlated with differences in cell cycle kinetics. Moreover, an immunofluorescence analysis of these proteins using the double labeling of PCNA as a marker of each cell cycle phase shows: (1) a previously undescribed nuclear translocation of CDK2 before S phase initiation; (2) a sudden increase of cdc2 nuclear immunoreactivity at G2/mitosis transition. These data support the roles of CDK2 and cdc2 at G1/S and G2/mitosis transitions, respectively. (3) We were unable to demonstrate in individual cells a strict association between the nuclear appearance of cyclin A and G1/S transition, and an association of cyclin A and CDK2 with PCNA-stained DNA replication sites. On the other hand, the lengthening of G2 phase in the TSH/cyclic AMP-dependent thyroid cell cycle was associated with a stabilization of Tyr15 inhibitory phosphorylation of cdc2 and an especially high nuclear concentration of cyclin A and CDK2. We hypothesize that high nuclear accumulation of cyclin A and CDK2 during G2 phase could be causative in the cyclic AMP-dependent delay of mitosis onset. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2O2. In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2O2-induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.  相似文献   

13.
14.
The effect of estradiol on the acetylation of nuclear high mobility group (HMG) proteins in the uterus of newborn (3 days old) guinea pigs was studied "in vivo" and in tissue slices. In the "in vivo" studies after subcutaneous injection of 5 mCi [3H]-acetate there is a rapid (20 min) uptake of radioactive acetate in the HMG-1, HMG-2, HMG-14 and HMG-17 high mobility group proteins. In parallel studies, after administration of the same quantity of [3H]-acetate plus 20 micrograms of estradiol (E2), a selective increase in the acetylation of HMG-14 protein is observed. The preferential acetylation of HMG-14 can also be demonstrated in uterine tissue slices 20 minutes after exposure to the hormone (5 x 10(-8)M). In conclusion, the present data suggest that the acetylation of HMG proteins, in particular HMG-14, and like that of nucleosomal "core" histones, is an early event in gene activation by estradiol.  相似文献   

15.
Nuclear transport proteins such as CSE1, NUP93 and Importinα have recently been shown to be chromatin-associated proteins in yeast, which have unexpected functions in gene regulation. Here we report interactions between the mammalian histone acetyltransferase CBP with nuclear transport proteins CAS (a CSE1 homologue) and Importin-α (Impα) and NUP93. CAS was found to bind the SRC1 interaction domain (SID) of CBP via a leucine-rich motif in the N-terminus of the protein, that is conserved in other SID-binding proteins. Co-immunoprecipitation experiments also revealed that CBP and Impα proteins form a complex. As Impα is a known acetylation target of CBP/p300, and is recycled to the cytoplasm via the exportin CAS, we investigated whether HDAC inhibitors would alter the subcellular localisation of these proteins. Treatment of COS-1 cells with the HDAC inhibitors trichostatin A or sodium butyrate resulted in sequestration of Impα in the nuclear envelope, accumulation of CAS in nuclear aggregates, and an increased number of CBP-containing PML bodies per cell. In addition, HDACi treatment appeared to enhance the association of Impα and CBP in co-immunoprecipitation experiments. Our results provide evidence for novel functional interactions between the chromatin modification enzyme CBP and nuclear transport proteins in mammalian cells.  相似文献   

16.
SRSF2 is a serine/arginine-rich protein belonging to the family of SR proteins that are crucial regulators of constitutive and alternative pre-mRNA splicing. Although it is well known that phosphorylation inside RS domain controls activity of SR proteins, other post-translational modifications regulating SRSF2 functions have not been described to date. In this study, we provide the first evidence that the acetyltransferase Tip60 acetylates SRSF2 on its lysine 52 residue inside the RNA recognition motif, and promotes its proteasomal degradation. We also demonstrate that the deacetylase HDAC6 counters this acetylation and acts as a positive regulator of SRSF2 protein level. In addition, we show that Tip60 downregulates SRSF2 phosphorylation by inhibiting the nuclear translocation of both SRPK1 and SRPK2 kinases. Finally, we demonstrate that this acetylation/phosphorylation signalling network controls SRSF2 accumulation as well as caspase-8 pre-mRNA splicing in response to cisplatin and determines whether cells undergo apoptosis or G(2)/M cell cycle arrest. Taken together, these results unravel lysine acetylation as a crucial post-translational modification regulating SRSF2 protein level and activity in response to genotoxic stress.  相似文献   

17.
蛋白质的赖氨酸乙酰化修饰可以定义为在蛋白质的赖氨酸残基上添加或移除一个乙酰基团,这个过程是由乙酰化酶和脱乙酰酶调控的.真核生物细胞核内组蛋白和转录因子的可逆乙酰化修饰对基因表达调控的机制早已研究得比较清楚.1996年以来,一些独立的研究也陆续发现,参与到其他生命活动中的蛋白质存在着乙酰化修饰情况,表明乙酰化可能在生命活动中发挥着广泛的调节作用.然而直到2009年,高通量的蛋白质质谱分析技术才使得在蛋白质组水平上研究乙酰化修饰成为可能,并发现蛋白质乙酰化普遍存在.学者们发现,乙酰化修饰是一个在细胞核或细胞质的亚细胞器内广泛存在的翻译后修饰调控机制,可能参与了染色体重塑、细胞周期调控、细胞骨架的大分子运输、新陈代谢等多种生命活动.本文详细总结代谢酶的乙酰化修饰对新陈代谢调控的关键作用,并说明代谢酶的乙酰化修饰是一个从原核生物到真核生物进化上高度保守的调控机制.  相似文献   

18.
Rat parietal cells were incubated for 2 h with pertussis toxin (100 ng/ml) which ADP-ribosylates and inactivates guanine nucleotide regulatory proteins (G proteins) of the 'Gi-like' family. The effect of this pretreatment on the action of inhibitors of parietal cell acid secretion was investigated by using the accumulation of the weak base aminopyrine as an index of secretory activity. The inhibitory actions of near maximally effective concentrations of prostaglandin E2 (PGE2), somatostatin and epidermal growth factor (EGF) on histamine-stimulated aminopyrine accumulation were reduced by 83%, 72% and 70%, respectively, by preincubation with pertussis toxin. By contrast, the inhibitory action of a near maximally effective concentration of 12-O-tetradecanoylphorbol 13-acetate on histamine-stimulated aminopyrine accumulation was reduced by only 12%. It is concluded that G-proteins are involved in the inhibitory actions of PGE2, somatostatin and EGF on parietal cells. However, since the inhibitory actions of PGE2 and EGF can be distinguished by the blockade of the action of EGF, but not that of PGE2, by 3-isobutyl-1-methylxanthine, it is possible that PGE2 and EGF either activate the same G-protein in different ways or work through different G-proteins.  相似文献   

19.
20.
Ionizing radiation, but not stimulation with epidermal growth factor (EGF), triggers EGF receptor (EGFR) import into the nucleus in a probably karyopherin alpha-linked manner. An increase in nuclear EGFR is also observed after treatment with H2O2, heat, or cisplatin. During, this process, the proteins Ku70/80 and the protein phosphatase 1 are transported into the nucleus. As a consequence, an increase in the nuclear kinase activity of DNA-dependent kinase (DNA-PK) and increased formation of the DNA end-binding protein complexes containing DNA-PK, essential for repair of DNA-strand breaks, occurred. Blockade of EGFR import by the anti-EGFR monoclonal antibody C225 abolished EGFR import into the nucleus and radiation-induced activation of DNA-PK, inhibited DNA repair, and increased radiosensitivity of treated cells. Our data implicate a novel function of the EGFR during DNA repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号