首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

2.
Pseudomonas fluorescens strain LP6a, isolated from petroleum condensate-contaminated soil, utilizes the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, anthracene and 2-methylnaphthalene as sole carbon and energy sources. The isolate also co-metabolically transforms a suite of PAHs and heterocycles including fluorene, biphenyl, acenaphthene, 1-methylnaphthalene, indole, benzothiophene, dibenzothiophene and dibenzofuran, producing a variety of oxidized metabolites. A 63 kb plasmid (pLP6a) carries genes encoding enzymes necessary for the PAH-degrading phenotype of P. fluorescens LP6a. This plasmid hybridizes to the classical naphthalene degradative plasmids NAH7 and pWW60, but has different restriction endonuclease patterns. In contrast, plasmid pLP6a failed to hybridize to plasmids isolated from several phenanthrene-utilizing strains which cannot utilize naphthalene. Plasmid pLP6a exhibits reproducible spontaneous deletions of a 38 kb region containing the degradative genes. Two gene clusters corresponding to the archetypal naphthalene degradation upper and lower pathway operons, separated by a cryptic region of 18 kb, were defined by transposon mutagenesis. Gas chromatographic-mass spectrometric analysis of metabolites accumulated by selected transposon mutants indicates that the degradative enzymes encoded by genes on pLP6a have a broad substrate specificity permitting the oxidation of a suite of polycyclic aromatic and heterocyclic substrates.  相似文献   

3.
Sphingomonas yanoikuyae B1 is able to grow on a wide variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. In addition, the initial enzymes for degradation of biphenyl have the ability to metabolize a wide variety of different polycyclic aromatic hydrocarbons. The catabolic pathways for the degradation of both the monocyclic and polycyclic aromatic hydrocarbons are intertwined, joining together at the level of (methyl)benzoate and catechol. Both upper branches of the catabolic pathways are induced when S. yanoikuyae B1 is grown on either class of compound. An analysis of the genes involved in the degradation of these aromatic compounds reveals that at least six operons are involved. The genes are not arranged in discrete pathway units but are combined in groups with genes for the degradation of both classes of compounds in the same operon. Genes for multiple dioxygenases are present perhaps explaining the ability of S. yanoikuyae B1 to grow on a wide variety of aromatic compounds. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

4.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C12O) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C23O) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 298–302.Original Russian Text Copyright © 2005 by Khomenkov, Shevelev, Zhukov, Kurlovich, Zagustina, Popov.  相似文献   

5.
Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation. Received 13 May 1999/ Accepted in revised form 05 July 1999  相似文献   

6.
A new member of class IV of cytochrome P450 monooxygenases was identified in Rhodococcus ruber strain DSM 44319. As the genome of R. ruber has not been sequenced, a P450-like gene fragment was amplified using degenerated primers. The flanking regions of the P450-like DNA fragment were identified by directional genome walking using polymerase chain reaction. The primary protein structure suggests a natural self-sufficient fusion protein consisting of ferredoxin, flavin-containing reductase, and P450 monooxygenase. The only flavin found within the enzyme was riboflavin 5′-monophosphate. The enzyme was successfully expressed in Escherichia coli, purified and characterized. In the presence of NADPH, the P450 monooxygenase showed hydroxylation activity towards polycyclic aromatic hydrocarbons naphthalene, indene, acenaphthene, toluene, fluorene, m-xylene, and ethyl benzene. The conversion of naphthalene, acenaphthene, and fluorene resulted in respective ring monohydroxylated metabolites. Alkyl aromatics like toluene, m-xylene, and ethyl benzene were hydroxylated exclusively at the side chains. The new enzyme’s ability to oxidize such compounds makes it a potential candidate for biodegradation of pollutants and an attractive biocatalyst for synthesis.  相似文献   

7.
Pseudomonas stutzeri OX1 is able to degrade toluene and ortho-xylene via the direct oxygenation of the aromatic ring. The genetic studies carried out suggest that the genes coding for the monooxygenase involved in the early steps of this catabolic route have been acquired by gene transfer. P. stutzeri OX1 is also potentially able to utilize meta- and para-xylene as growth substrates. These two isomers are metabolized through a different pathway (TOL pathway). Both catabolic routes can be activated or inactivated by means of genomic rearrangements. The relevance of such recombination mechanisms in the evolution and the adaptability of P. stutzeri is discussed.  相似文献   

8.
Pseudomonas stutzeri OX1 is able to grow ono-xylene but is unable to grow onm-xylene andp-xylene, which are partially metabolized through theo-xylene degradative pathway leading to the formation of dimethylphenols toxic to OX1.P. stutzeri spontaneous mutants able to grow onm-xylene andp-xylene have been isolated. These mutants soon lose the ability to grow ono-xylene. Data from HPLC analyses and from induction studies suggest that in these mutantsm-xylene andp-xylene could be metabolized through the oxidation of a methyl substituent.P. stutzeri chromosomal DNA is shown to share homology with pWW0 catabolic genes. In the mutant strains the region homologous to pWW0 upper pathway genes has undergone a genomic rearrangement.Abbreviations BADH benzylalcohol dehydrogenase - cat catechol - C23O catechol 2,3-dioxygenase - 2,3-,3,4-,2,4-,2,6-,3,5-2,5-DMP 2,3-,3,4-,2,4-,2,6-,3,5-,2,5-dimethylphenol - 2-MBOH 2-methylbenzyl alcohol - 3-MBOH 3-methylbenzyl alcohol - 4-MBOH 4-methylbenzyl alcohol - m-,p-tol m-,p-toluate - o-,m-,p-xyl o-,m-,p-xylene  相似文献   

9.
The anaerobic degradation pathways of toluene and m-xylene are initiated by addition of a fumarate cosubstrate to the methyl group of the hydrocarbon, yielding (R)-benzylsuccinate and (3-methylbenzyl)succinate, respectively, as first intermediates. These reactions are catalyzed by a novel glycyl-radical enzyme, (R)-benzylsuccinate synthase. Substrate specificities of benzylsuccinate synthases were analyzed in Azoarcus sp. strain T and Thauera aromatica strain K172. The enzyme of Azoarcus sp. strain T converts toluene, but also all xylene and cresol isomers, to the corresponding succinate adducts, whereas the enzyme of T. aromatica is active with toluene and all cresols, but not with any xylene isomer. This corresponds to the capabilities of Azoarcus sp. strain T to grow on either toluene or m-xylene, and of T. aromatica to grow on toluene as sole hydrocarbon substrate. Thus, differences in the substrate spectra of the respective benzylsuccinate synthases of the two strains contribute to utilization of different aromatic hydrocarbons, although growth on different substrates also depends on additional determinants. We also provide direct evidence by electron paramagnetic resonance (EPR) spectroscopy that glycyl radical enzymes corresponding to substrate-induced benzylsuccinate synthases are specifically detectable in anoxically prepared extracts of toluene- or m-xylene-grown cells. The presence of the EPR signals and the determined amount of the radical are consistent with the respective benzylsuccinate synthase activities. The properties of the EPR signals are highly similar to those of the prototype glycyl radical enzyme pyruvate formate lyase, but differ slightly from previously reported parameters for partially purified benzylsuccinate synthase.  相似文献   

10.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

11.
Abstract A multidisciplinary field study investigating the fate and transport of petroleum hydrocarbons commonly associated with jet-fuel contamination is currently underway at Columbus Air Force Base (AFB), Mississippi. Sixty sediment cores from 12 boreholes were recovered from the study aquifer. The goal of this initial sampling was to characterize the potential microbial activity using 14C-labeled substrates, as well as the presence, abundance, and distribution of specific hydrocarbon degrading genotypes using DNA:DNA hybridization. Enumeration of total microbial abundance using a 16S rDNA universal oligonucleotide probe was compared to traditional enumeration methods. Total culturable populations determined by spread plate analysis ranged from a low of 10(4) to more than 10(6) organisms per gram sediment. Microbial abundance estimated by DNA hybridization studies with 16S rDNA genes ranged from 10(7) to 10(8) organisms per gram sediment. Molecular analysis of aquifer samples using DNA probes targeting genes encoding the degradative enzymes alkane hydroxylase (alkB), catechol 2,3-dioxygenase (nahH), naphthalene dioxygenase (nahA), toluene dioxygenase (todC1C2), toluene monooxygenase (tomA), and xylene monooxygenase (xylA), as well as two probes measuring methanogenic microorganisms, codh (carbon monoxide dehydrogenase) and mcr (methyl coenzyme reductase), revealed that each target gene sequence was present in nearly all 60 samples. The presence of organisms demonstrating the phenotype to degrade BTEX and naphthalene was further supported using mineralization assays with 14C-labeled benzene, toluene, naphthalene, and phenanthrene. Minimal activity occurred during the first 24 hours. After a period of 5-7 days, greater than 40% of the target compounds were mineralized in aquifer sediments.  相似文献   

12.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

13.
14.
Our abilities to detect and enumerate pollutant-biodegrading microorganisms in the environment are rapidly advancing with the development of molecular genetic techniques. Techniques based on multiplex and real-time PCR amplification of aromatic oxygenase genes were developed to detect and quantify aromatic catabolic pathways, respectively. PCR primer sets were identified for the large subunits of aromatic oxygenases from alignments of known gene sequences and tested with genetically well-characterized strains. In all, primer sets which allowed amplification of naphthalene dioxygenase, biphenyl dioxygenase, toluene dioxygenase, xylene monooxygenase, phenol monooxygenase, and ring-hydroxylating toluene monooxygenase genes were identified. For each primer set, the length of the observed amplification product matched the length predicted from published sequences, and specificity was confirmed by hybridization. Primer sets were grouped according to the annealing temperature for multiplex PCR permitting simultaneous detection of various genotypes responsible for aromatic hydrocarbon biodegradation. Real-time PCR using SYBR green I was employed with the individual primer sets to determine the gene copy number. Optimum polymerization temperatures for real-time PCR were determined on the basis of the observed melting temperatures of the desired products. When a polymerization temperature of 4 to 5°C below the melting temperature was used, background fluorescence signals were greatly reduced, allowing detection limits of 2 × 102 copies per reaction mixture. Improved in situ microbial characterization will provide more accurate assessment of pollutant biodegradation, enhance studies of the ecology of contaminated sites, and facilitate assessment of the impact of remediation technologies on indigenous microbial populations.  相似文献   

15.
The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed the presence of six open reading frames (ORFs) homologous to other genes clustered in operons coding for multicomponent monooxygenases found in benzene- and toluene-degradative pathways cloned from Pseudomonas strains. Significant similarities were also found with multicomponent monooxygenase systems for phenol, methane, alkene, and dimethyl sulfide cloned from different bacterial strains. The knockout of each ORF and complementation with the wild-type allele indicated that all six ORFs are essential for the full activity of the toluene/o-xylene monooxygenase in Escherichia coli. This analysis also shows that despite its activity on both hydrocarbons and phenols, toluene/ o-xylene monooxygenase belongs to a toluene multicomponent monooxygenase subfamily rather than to the monooxygenases active on phenols.  相似文献   

16.
The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.  相似文献   

17.
Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m–3 h–1 and retention time ranges of 0.5–3.0 min and 0.6–3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene >o-xylene >m-xylene >p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene >o-xylene >ethylbenzene >m-xylene >p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions.  相似文献   

18.
Subcultures of Pseudomonas putida R5-3 altered their plasmid DNA content in specific ways depending on the particular aromatic hydrocarbon utilized as the sole carbon source. Two indigenous plasmids, 115 and 95 kilobases (kb) in size, were observed in R5-3A, which was derived from R5-3 by growth on minimal medium containing p-methylbenzoate as the sole carbon source. When R5-3A was transferred to medium containing m-xylene or toluene, derivative strains were obtained in which the 95-kb plasmid was lost and a new plasmid of 50 or 60 kb appeared. Reversion to the original plasmid profile of R5-3A was observed when xylene- or toluene-grown cells were returned to medium containing p-methylbenzoate. Restriction enzyme analysis and Southern blot hybridizations of total plasmid DNA indicated deletions and rearrangements of DNA restriction fragments in the derivatives maintained on m-xylene and toluene when compared with the original R5-3A. In the derivatives which retrieved the original plasmid profile, the restriction enzyme fragment pattern was identical to that in the original R5-3A, in that the fragments which were missing after growth on m-xylene or toluene were again present. Southern blot hybridizations revealed that part of the plasmid DNA lost from the original plasmid profile was integrated into the chromosomal DNA of xylene-grown R5-3B and that these plasmid fragments were associated with aromatic hydrocarbon metabolism. Hybridization with pathway-specific DNA fragments from the TOL plasmid pWWO indicated that this 95-kb plasmid contains DNA homologous to the meta-fission pathway genes.  相似文献   

19.
BTEX catabolism interactions in a toluene-acclimatized biofilter   总被引:1,自引:0,他引:1  
BTEX substrate interactions for a toluene-acclimatized biofilter consortium were investigated. Benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies were determined at a loading rate of 18.07 g m−3 h−1 and retention times of 0.5–3.0 min. This was also repeated for toluene in a 1:1 (m/m) ratio mixture (toluene: benzene, ethylbenzene, or xylene ) with each of the other compounds individually to obtain a final total loading of 18.07 g m−3 h−1. The results obtained were modelled using Michaelis–Menten kinetics and an explicit finite difference scheme to generate v max and K m parameters. The v max/K m ratio (a measure of the catalytic efficiency, or biodegradation capacity, of the reactor) was used to quantify substrate interactions occurring within the biofilter reactor without the need for free-cell suspended and monoculture experimentation. Toluene was found to enhance the catalytic efficiency of the reactor for p-xylene, while catabolism of all the other compounds was inhibited competitively by the presence of toluene. The toluene-acclimatized biofilter was also able to degrade all of the other BTEX compounds, even in the absence of toluene. The catalytic efficiency of the reactor for compounds other than toluene was in the order: ethylbenzene>benzene>o-xylene>m-xylene>p-xylene. The catalytic efficiency for toluene was reduced by the presence of all other tested BTEX compounds, with the greatest inhibitory effect being caused by the presence of benzene, while o-xylene and p-xylene caused the least inhibitory effect. This work illustrated that substrate interactions can be determined directly from biofilter reactor results without the need for free-cell and monoculture experimentation. Received: 13 April 2000 / Received revision: 20 July 2000 / Accepted: 27 July 2000  相似文献   

20.
Nakagawa T  Sato S  Fukui M 《Biodegradation》2008,19(6):909-913
Anaerobic degradation of p-xylene was studied with sulfate-reducing enrichment culture. The enrichment culture was established with sediment-free sulfate-reducing consortium on crude oil. The crude oil-degrading consortium prepared with marine sediment revealed that toluene, and xylenes among the fraction of alkylbenzene in the crude oil were consumed during the incubation. The PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene for the p-xylene degrading sulfate-reducing enrichment culture showed the presence of the single dominant DGGE band pXy-K-13 coupled with p-xylene consumption and sulfide production. Sequence analysis of the DGGE band revealed a close relationship between DGGE band pXy-K-13 and the previously described marine sulfate-reducing strain oXyS1 (similarity value, 99%), which grow anaerobically with o-xylene. These results suggest that microorganism corresponding to pXy-K-13 is an important sulfate-reducing bacterium to degrade p-xylene in the enrichment culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号