首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Previous studies have defined vaccinia virus (VACV)-derived T cell epitopes in VACV-infected human leukocyte antigen-A*0201 (HLA-A2.1) transgenic (Tg) mice and A2.1-positive human Dryvax vaccinees. A total of 14 epitopes were detected in humans and 16 epitopes in A2.1 Tg mice; however, only two epitopes were independently reported in both systems. This limited overlap raised questions about the suitability of using HLA Tg mice as a model system to map human T cell responses to a complex viral pathogen. The present study was designed to investigate this issue in more detail.

Results

Re-screening the panel of 28 A2.1-restricted epitopes in additional human vaccinees and in A2.1 Tg mice revealed that out of the 28 identified epitopes, 13 were detectable in both systems, corresponding to a 46% concordance rate. Interestingly, the magnitude of responses in Tg mice against epitopes originally identified in humans is lower than for epitopes originally detected in mice. Likewise, responses in humans against epitopes originally detected in Tg mice are of lower magnitude.

Conclusion

These data suggest that differences in immunodominance patterns might explain the incomplete response overlap, and that with limitations; HLA Tg mice represent a relevant and suitable model system to study immune responses against complex pathogens.  相似文献   

2.
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.  相似文献   

3.
A polyepitopic CD8+ T-cell response is critical for the control of hepatitis B virus (HBV) infection. The HBV X protein (HBx) is a multifunctional protein that is important for the viral life cycle and for host-virus interactions. The aim of this study was to analyze the immunogenicity and dominance of various HLA-A*0201-restricted HBx-derived epitopes. For this purpose, we immunized HLA-A*0201-transgenic mice with HBx-derived peptides and DNA. This is a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, as these mice possess a cytotoxic T lymphocyte (CTL) repertoire representative of HLA-A2.1 individuals. We used cytotoxic tests and enzyme-linked immunosorbent spot (ELISPOT) assays to study the induction of specific cytotoxic and interferon (IFN)-gamma-secreting T cells. This allowed us to classify the HBx epitopes according to their T-cell activation capacity. After endogenous processing of the antigen synthesized in vivo after DNA-based immunization, we found that the HBx-specific T-cell response is targeted against one immunodominant epitope. Furthermore, following peptide immunization, we identified six additional novel subdominant T-cell epitopes. Inclusion of well-characterized epitopic sequences of HBx in a new vaccine for chronic HBV infections could help to broaden the T-cell response.  相似文献   

4.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

5.
Trypanosoma cruzi-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of parasite growth and will play an important part in therapeutic and prophylactic T. cruzi vaccines. The identification of parasite-specific epitopes that are efficiently recognized by CTLs is the first step in the development of future vaccines. HLA-A2 transgenic mice (HHD) were shown to provide a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, since these mice are endowed with a CTL repertoire representative of HLA-A2.1 individuals. Here, we describe the immunological characterization of T-cell epitopes of the T. cruzi ribosomal P2 protein (TcP2beta) that are recognized by HLA-A*0201-restricted CTLs in HLA-transgenic mice and humans. Epitopes identified in the present study do not share sequence homology with the homologous human or murine counterparts and so they should not induce any autoreactive response. Moreover, HHD mice vaccinated with these peptide epitopes have reduced parasitemia after challenge with a lethal T. cruzi infection. Hence, these epitopes represent potential subunit components of multi-protein vaccines to prevent Chagas' disease.  相似文献   

6.
Handel A  Antia R 《Journal of virology》2008,82(16):7768-7772
Understanding immunodominance, the phenomenon of epitope-specific T cells expanding in an often distinctly hierarchical fashion, is important for the design of T-cell-based intervention strategies. Several recent studies have investigated immunodominance of H-2D(b)-restricted CD8(+) T cells specific for the nucleoprotein NP366 and acid polymerase PA224 epitopes during influenza A virus infection of C57BL/6 mice. CD8(+) T cells specific for these two epitopes are codominant during primary infection; NP366 dominates during secondary infection. While a number of explanations for this observation have been proposed, none of them can fully account for all the observed data. In this article, we use a simple mathematical model to explain the seemingly inconsistent data. We show that the dynamic interactions between CD8(+) T cells and antigen presentation lead to a situation where CD8(+) T cells are limiting during the initial response whereas antigen is limiting in the secondary response. This "numbers game" between antigen and CD8(+) T cells can reproduce the observed immunodominance of the NP336- and PA224-specific CD8(+) T cells, thereby explaining the reported experimental data.  相似文献   

7.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

8.
Previous studies have indicated that in transgenic mice expressing human class I MHC molecules, it is difficult to demonstrate a significant CTL response to a viral Ag in the context of the transgenic molecule. In this paper, a procedure is reported for the isolation of influenza-specific murine CTL restricted by the human class I molecule HLA-A2.1. The principal specificity of such CTL is for a fragment of the influenza M1 protein that has been previously shown to be immunodominant for human HLA-A2.1-restricted CTL. CTL of this specificity were also established through the use of peptide-pulsed rather than virus-infected stimulators. The dependence of murine CTL recognition upon peptide length and HLA-A2 structure was established to be similar to that previously reported for human CTL. However, the fine specificity of CTL maintained on virus-infected stimulators was somewhat different from that of CTL maintained with M1 peptide. This suggests that differences in surface density or peptide structure between peptide-pulsed and virus-infected stimulators may result in the outgrowth of T cells with different receptor structures. The immunodominance of the M1 peptide determinant in both mice and humans suggests that species-specific differences in TCR structure, Ag-processing systems, and self-tolerance are of less importance than limitations on the ability of antigenic peptides to bind to appropriate class I molecules. These results thus establish the utility of the transgenic system for the identification of human class I MHC-restricted T cell epitopes.  相似文献   

9.
Many components contribute to immunodominance in the response to a complex virus, but their relative importance is unclear. This was addressed using vaccinia virus and HLA-A*0201 as the model system. A comprehensive analysis of 18 viral proteins recognized by CD8(+) T cell responses demonstrated that approximately one-fortieth of all possible 9- to 10-mer peptides were high-affinity HLA-A*0201 binders. Peptide immunization and T cell recognition data generated from 90 peptides indicated that about one-half of the binders were capable of eliciting T cell responses, and that one-seventh of immunogenic peptides are generated by natural processing. Based on these results, we estimate that vaccinia virus encodes approximately 150 dominant and subdominant epitopes restricted in by HLA-A*0201. However, of all these potential epitopes, only 15 are immunodominant and actually recognized in vivo during vaccinia virus infection of HLA-A*0201 transgenic mice. Neither peptide-binding affinity, nor complex stability, nor TCR avidity, nor amount of processed epitope appeared to strictly correlate with immunodominance status. Additional experiments suggested that vaccinia infection impairs the development of responses directed against subdominant epitopes. This suggested that additional factors, including immunoregulatory mechanisms, restrict the repertoire of T cell specificities after vaccinia infection by a factor of at least 10.  相似文献   

10.
The phenomenon whereby the host immune system responds to only a few of the many possible epitopes in a foreign protein is termed immunodominance. Immunodominance occurs not only during microbial infection but also following vaccination, and clarification of the underlying mechanism may permit the rational design of vaccines which can circumvent immunodominance, thereby inducing responses to all epitopes, dominant and subdominant. Here, we show that immunodominance affects DNA vaccines and that the effects can be avoided by the simple expedient of epitope separation. DNA vaccines encoding isolated dominant and subdominant epitopes induce equivalent responses, confirming a previous demonstration that coexpression of dominant and subdominant epitopes on the same antigen-presenting cell (APC) is central to immunodominance. We conclude that multiepitope DNA vaccines should comprise a cocktail of plasmids, each with its own epitope, to allow maximal epitope dispersal among APCs. In addition, we demonstrate that subdominant responses are actively suppressed by dominant CD8(+) T-cell responses and that gamma interferon (IFN-gamma) is required for this suppression. Furthermore, priming of CD8(+) T cells to a single dominant epitope results in strong suppression of responses to other normally dominant epitopes in immunocompetent mice, in effect rendering these epitopes subdominant; however, responses to these epitopes are increased 6- to 20-fold in mice lacking IFN-gamma. We suggest that, in agreement with our previous observations, IFN-gamma secretion by CD8(+) T cells is highly localized, and we propose that its immunosuppressive effect is focused on the APC with which the dominant CD8(+) T cell is in contact.  相似文献   

11.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

12.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

13.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

14.
Understanding immunity to vaccinia virus (VACV) is important for the development of safer vaccines for smallpox- and poxvirus-vectored recombinant vaccines. VACV is also emerging as an outstanding model for studying CD8(+) T cell immunodominance because of the large number of CD8(+) T cell epitopes known for this virus in both mice and humans. In this study, we characterize the CD8(+) T cell response in vaccinated BALB/c mice by a genome-wide mapping approach. Responses to each of 54 newly identified H-2(d)-restricted T cell epitopes could be detected after i.p. and dermal vaccination routes. Analysis of these new epitopes in the context of those already known for VACV in mice and humans revealed two important findings. First, CD8(+) T cell epitopes are not randomly distributed across the VACV proteome, with some proteins being poorly or nonimmunogenic, while others are immunoprevalent, being frequently recognized across diverse MHC haplotypes. Second, some proteins constituted the major targets of the immune response by a specific haplotype as they recruited the majority of the specific CD8(+) T cells but these proteins did not correspond to the immunoprevalent Ags. Thus, we found a dissociation between immunoprevalence and immunodominance, implying that different sets of rules govern these two phenomena. Together, these findings have clear implications for the design of CD8(+) T cell subunit vaccines and in particular raise the exciting prospect of being able to choose subunits without reference to MHC restriction.  相似文献   

15.
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.  相似文献   

16.
We identified a series of immunodominant and subdominant epitopes from alpha fetoprotein (AFP), restricted by HLA-A*0201, which are recognized by the human T cell repertoire. The four immunodominant epitopes have been tested for immunogenicity in vivo, in HLA-A*0201+AFP+ advanced stage hepatocellular cancer (HCC) patients, and have activated and expanded AFP-specific IFN-gamma-producing T cells in these patients, despite high serum levels of this self Ag. Here, we have examined the frequency, function, and avidity of the T cells specific for subdominant epitopes from AFP. We find that T cells specific for several of these epitopes are of similar or higher avidity than those specific for immunodominant epitopes. We then tested the peripheral blood of subjects ex vivo with different levels of serum AFP for the hierarchy of response to epitopes from this Ag and find that HCC patients have detectable frequencies of circulating IFN-gamma-producing AFP-specific CD8+ T cells to both immunodominant and subdominant epitopes. We find the immunodominant and subdominant peptide-specific T cells to be differentially expanded with different modes of Ag presentation. Whereas spontaneous and AFP protein-stimulated responses show evidence for immunodominance, AdVhAFP-transduced dendritic cell-stimulated responses were broader and not skewed. Importantly, these data identify subdominant epitopes from AFP that can activate high-avidity T cells, and that can be detected and expanded in HCC subjects. These subdominant epitope-specific T cells can also recognize tumor cells and may be important therapeutically.  相似文献   

17.
The antitumor effect of the combined administration with recombinant human interleukin-2 (rIL-2) and sizofiran (SPG), a single glucan of Shizophyllum commune Fries, was studied in vivo in C57BL/6 mice intraperitoneally inoculated with EL-4 lymphoma. The effect was evaluated by a) comparing the survival time of the mice, b) analysis of the intraperitoneal cell population in Giemsa-stained specimens, c) surface marker analysis of peritoneal exudative cells with flow cytometry, d) cytotoxic assay of cells against EL-4 and Yac-1 lymphoma, and e) elimination of some cell populations by monoclonal antibodies, to identify the antitumor-effector cells showing cytotoxic activity. The survival of mice given both rIL-2 and SPG was significantly longer than the control mice or those given SPG alone or rIL-2 alone. It was demonstrated that the administration of SPG and/or rIL-2 to the EL-4 lymphoma-bearing mice activated immune-response cells in the peritoneal cavity such as T lymphocytes, NK cells, or macrophages, which might be effective in reducing lymphoma cells. The combination of rIL-2 and SPG administration appears to activate the antitumor- immune response at the tumor site more effectively than when either agent was administered alone.  相似文献   

18.
We have previously reported several CTL epitopes derived from the hepatitis B viral X Ag (HBx). In this study, we evaluated whether HBx-specific CTLs can be effectively used in adoptive cancer immunotherapy. To validate the possibility, four peptides containing a HLA-A2.1-restricted binding consensus motif were identified from the HBx protein and tested for their ability to activate CTL from PBMCs isolated from chronic carriers of HBV (n = 12). We selected two highly potent epitopes, HBx 52-60 (HLSLRGLFV) and HBx 115-123 (CLFKDWEEL), that are capable of inducing Ag-specific cytotoxic T cells in patient PBMCs. For adoptive immunotherapy using HBx-specific CTLs, we generated CTL clones restricted to the HBx 52-60 or HBx 115-123 peptide using a limiting dilution technique. LC-46, an HBx 52-60-specific clone, is CD62L(-)CD69(+)CD45RO(+)CD45RA(-)CD25(dim) and is stained by IFN-gamma (approximately 92%), IL-2 (30%), and TNF-alpha (56%), but not by IL-5, IL-10, IL-12, or TNF-beta, indicating that the cells are fully activated T cytotoxic 1-type cells. When LC-46 cells were adoptively transferred into xenografted nude mice bearing human hepatomas expressing HLA-A2.1 molecules and intracellular HBx proteins, the tumors were eradicated. Taken together, our data provide solid evidence for the feasibility of adoptive immunotherapy with HBx-sensitized CTLs in hepatitis disease, including hepatocellular carcinoma (HCC).  相似文献   

19.
Summary The severe combined immunodeficient (SCID) mouse, lacking functional T and B lymphocytes, has been considered by many groups to be a prime candidate for the reconstitution of a human immune system in a laboratory animal. In addition, this immuno-deficient animal would appear to have excellent potential as a host for transplanted human cancers, thus providing an exceptional opportunity for the study of interactions between the human immune system and human cancer in a laboratory animal. However, because this animal model is very recent, few studies have been reported documenting the capability of these mice to accept human cancers, and whether or not the residual immune cells in these mice (e.g. natural killer, NK, cells; macrophages) possess antitumor activities toward human cancers. Thus, the purpose of this study was (a) to determine whether or not a human breast carcinoma cell line (MCF-7) can be successfully transplanted to SCID mice, (b) to determine whether or not chronic treatment of SCID mice with a potent lymphokine (recombinant interleukin-2, rIL-2) could alter MCF-7 carcinoma growth, and (c) to assess whether or not rIL-2-activated NK cells (LAK cells) are important modulators of growth of MCF-7 cells in SCID mice. To fulfill these objectives, female SCID mice were implanted s.c. with MCF-7 cells (5 × 106 cells/mouse) at 6 weeks of age. Six weeks later, some of the mice were injected i.p. twice weekly with rIL-2 (1 × 104 U mouse–1 injection–1). Results clearly show that MCF-7 cells can grow progressively in SCID mice; 100% of the SCID mice implanted with MCF-7 cells developed palpable measurable tumors within 5–6 weeks after tumor cell inoculation. In addition, MCF-7 tumor growth was significantly (P <0.01) suppressed by rIL-2 treatment. rIL-2 treatment was non-toxic and no effect of treatment on body weight gains was observed. For non-tumor-bearing SCID mice, splenocytes treated in vitro with rIL-2 (lymphokine-activated killer, LAK, cells) or splenocytes derived from rIL-2-treated SCID mice (LAK cells) had significant (P <0.01) cytolytic activity toward MCF-7 carcinoma cells in vitro. In contrast, splenocytes (LAK cells) derived from tumor(MCF-7)-bearing rIL-2-treated SCID mice lacked cytolytic activities toward MCF-7 cells in vitro. No significant concentration of LAK cells in MCF-7 human breast carcinomas was observed nor did rIL-2 treatment significantly alter growth of MCF-7 cells in vitro. Thus, while rIL-2 treatment significantly suppressed growth of MCF-7 breast carcinomas in SCID mice, the mechanism of this growth suppression, albeit clearly not involving T and B lymphocytes, does not appear to be mediated via a direct cytolytic activity of LAK cells toward the carcinoma cells. However, rIL-2-activated SCID mouse splenocytes (LAK cells) do possess the capability of significant cytolytic activity toward MCF-7 human breast carcinoma cells. Thus, treatment of SCID mice with a potent lymphokine (rIL-2) induces a significant antitumor host response, a response that does not involve T and B lymphocytes and appears not to involve NK/LAK cells. This host response must be considered in future studies designed to investigate the interactions of reconstituted human immune systems and human cancers within this highly promising immuno deficient experimental animal model.  相似文献   

20.
Multiple sclerosis (MS) is a demyelinating inflammatory disease of the CNS. Though originally believed to be CD4-mediated, additional immune effector mechanisms, including myelin-specific CD8(+) T cells, are now proposed to participate in the pathophysiology of MS. To study the immunologic and encephalitogenic behavior of HLA-A*0201-binding myelin-derived epitopes in vivo, we used a humanized HLA-A*0201-transgenic mouse model. Eight HLA-A*0201-binding peptides derived from myelin oligodendrocyte glycoprotein (MOG), an immunodominant myelin self-Ag, were identified in silico. After establishing their relative affinity for HLA-A*0201 and their capacity to form stable complexes with HLA-A*0201 in vitro, their immunological characteristics were studied in HLA-A*0201-transgenic mice. Five MOG peptides, which bound stably to HLA-A*0201 exhibited strong immunogenicity by inducing a sizeable MOG-specific HLA-A*0201-restricted CD8(+) T cell response in vivo. Of these five candidate epitopes, four were processed by MOG-transfected RMA target cells and two peptides proved immunodominant in vivo in response to a plasmid-encoding native full-length MOG. One of the immunodominant MOG peptides (MOG(181)) generated a cytotoxic CD8(+) T cell response able to aggravate CD4(+)-mediated EAE. Therefore, this detailed in vivo characterization provides a hierarchy of candidate epitopes for MOG-specific CD8(+) T cell responses in HLA-A*0201 MS patients identifying the encephalitogenic MOG(181) epitope as a primary candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号