首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, the accuracy of existing methods is limited. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our method. Empirically, the accuracy of the method correlates positively with the local match rate; therefore, we employ it to predict the local structures of positions with a high local match rate. For positions with a low local match rate, we propose a neural network prediction method. To better utilize the knowledge-based and neural network methods, we design a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines both methods. To evaluate the performance of the proposed methods, we first perform cross-validation experiments by applying our knowledge-based method, a neural network method, and HYPLOSP to a large dataset of 3,925 protein chains. We test our methods extensively on three different structural alphabets and evaluate their performance by two widely used criteria, Maximum Deviation of backbone torsion Angle (MDA) and Q(N), which is similar to Q(3) in secondary structure prediction. We then compare HYPLOSP with three previous studies using a dataset of 56 new protein chains. HYPLOSP shows promising results in terms of MDA and Q(N) accuracy and demonstrates its alphabet-independent capability.  相似文献   

3.
MOTIVATION: In our previous approach, we proposed a hybrid method for protein secondary structure prediction called HYPROSP, which combined our proposed knowledge-based prediction algorithm PROSP and PSIPRED. The knowledge base constructed for PROSP contains small peptides together with their secondary structural information. The hybrid strategy of HYPROSP uses a global quantitative measure, match rate, to determine whether PROSP or PSIPRED is to be used for the prediction of a target protein. HYPROSP made slight improvement of Q(3) over PSIPRED because PROSP predicted well for proteins with match rate >80%. As the portion of proteins with match rate >80% is quite small and as the performance of PSIPRED also improves, the advantage of HYPROSP is diluted. To overcome this limitation and further improve the hybrid prediction method, we present in this paper a new hybrid strategy HYPROSP II that is based on a new quantitative measure called local match rate. RESULTS: Local match rate indicates the amount of structural information that each amino acid can extract from the knowledge base. With the local match rate, we are able to define a confidence level of the PROSP prediction results for each amino acid. Our new hybrid approach, HYPROSP II, is proposed as follows: for each amino acid in a target protein, we combine the prediction results of PROSP and PSIPRED using a hybrid function defined on their respective confidence levels. Two datasets in nrDSSP and EVA are used to perform a 10-fold cross validation. The average Q(3) of HYPROSP II is 81.8% and 80.7% on nrDSSP and EVA datasets, respectively, which is 2.0% and 1.1% better than that of PSIPRED. For local structures with match rate >80%, the average Q(3) improvement is 4.4% on the nrDSSP dataset. The use of local match rate improves the accuracy better than global match rate. There has been a long history of attempts to improve secondary structure prediction. We believe that HYPROSP II has greatly utilized the power of peptide knowledge base and raised the prediction accuracy to a new high. The method we developed in this paper could have a profound effect on the general use of knowledge base techniques for various predictionalgorithms. AVAILABILITY: The Linux executable file of HYPROSP II, as well as both nrDSSP and EVA datasets can be downloaded from http://bioinformatics.iis.sinica.edu.tw/HYPROSPII/.  相似文献   

4.
5.
Though highly desirable, neither a single experimental technique nor a computational approach can be sufficient enough to rationalize a protein structure. The incorporation of biophysical constraints, which can be rationalized based on conventional biophysical measurements, might lead to considerable improvement of the simulation procedures. In this regard, our analysis of 180 proteins in different conformational states allows prediction of the overall protein dimension based on the chain length, i.e., the protein molecular weight, with an accuracy of 10%.  相似文献   

6.
Predict7, a program for protein structure prediction   总被引:4,自引:0,他引:4  
We describe a program for protein sequence analysis which runs in IBM PC computers. Protein sequences are loaded from files in Mount-Conrad and Lipman-Pearson format. Seven features are analyzed: hydrophilicity, hydropathy, surface probability, side chain flexibility, antigenicity, secondary structure and N-glycosylation sites. Numeric results can be shown, printed or stored in files exportable to other programs. Graphics of up to four predictions can be displayed on the screen, printed out or plotted, with several definable options. This program has been designed to be fast, user-friendly and to be shared with the scientific community.  相似文献   

7.
SUMMARY: Porter is a new system for protein secondary structure prediction in three classes. Porter relies on bidirectional recurrent neural networks with shortcut connections, accurate coding of input profiles obtained from multiple sequence alignments, second stage filtering by recurrent neural networks, incorporation of long range information and large-scale ensembles of predictors. Porter's accuracy, tested by rigorous 5-fold cross-validation on a large set of proteins, exceeds 79%, significantly above a copy of the state-of-the-art SSpro server, better than any system published to date. AVAILABILITY: Porter is available as a public web server at http://distill.ucd.ie/porter/ CONTACT: gianluca.pollastri@ucd.ie.  相似文献   

8.
In a cell, it has been estimated that each protein on average interacts with roughly 10 others, resulting in tens of thousands of proteins known or suspected to have interaction partners; of these, only a tiny fraction have solved protein structures. To partially address this problem, we have developed M-TASSER, a hierarchical method to predict protein quaternary structure from sequence that involves template identification by multimeric threading, followed by multimer model assembly and refinement. The final models are selected by structure clustering. M-TASSER has been tested on a benchmark set comprising 241 dimers having templates with weak sequence similarity and 246 without multimeric templates in the dimer library. Of the total of 207 targets predicted to interact as dimers, 165 (80%) were correctly assigned as interacting with a true positive rate of 68% and a false positive rate of 17%. The initial best template structures have an average root mean-square deviation to native of 5.3, 6.7, and 7.4 Å for the monomer, interface, and dimer structures. The final model shows on average a root mean-square deviation improvement of 1.3, 1.3, and 1.5 Å over the initial template structure for the monomer, interface, and dimer structures, with refinement evident for 87% of the cases. Thus, we have developed a promising approach to predict full-length quaternary structure for proteins that have weak sequence similarity to proteins of solved quaternary structure.  相似文献   

9.
MOTIVATION: Improved comparisons of multiple sequence alignments (profiles) with other profiles can identify subtle relationships between protein families and motifs significantly beyond the resolution of sequence-based comparisons. RESULTS: The local alignment of multiple alignments (LAMA) method was modified to estimate alignment score significance by applying a new measure based on Fisher's combining method. To verify the new procedure, we used known protein structures, sequence annotations and cyclical relations consistency analysis (CYRCA) sets of consistently aligned blocks. Using the new significance measure improved the sensitivity of LAMA without altering its selectivity. The program performed better than other profile-to-profile methods (COMPASS and Prof_sim) and a sequence-to-profile method (PSI-BLAST). The testing was large scale and used several parameters, including pseudo-counts profile calculations and local ungapped blocks or more extended gapped profiles. This comparison provides guidelines to the relative advantages of each method for different cases. We demonstrate and discuss the unique advantages of using block multiple alignments of protein motifs.  相似文献   

10.
Effective energy functions for protein structure prediction   总被引:14,自引:0,他引:14  
Protein structure prediction, fold recognition, homology modeling and design rely mainly on statistical effective energy functions. Although the theoretical foundation of such functions is not clear, their usefulness has been demonstrated in many applications. Molecular mechanics force fields, particularly when augmented by implicit solvation models, provide physical effective energy functions that are beginning to play a role in this area.  相似文献   

11.
12.
Kim D  Xu D  Guo JT  Ellrott K  Xu Y 《Protein engineering》2003,16(9):641-650
A new method for fold recognition is developed and added to the general protein structure prediction package PROSPECT (http://compbio.ornl.gov/PROSPECT/). The new method (PROSPECT II) has four key features. (i) We have developed an efficient way to utilize the evolutionary information for evaluating the threading potentials including singleton and pairwise energies. (ii) We have developed a two-stage threading strategy: (a) threading using dynamic programming without considering the pairwise energy and (b) fold recognition considering all the energy terms, including the pairwise energy calculated from the dynamic programming threading alignments. (iii) We have developed a combined z-score scheme for fold recognition, which takes into consideration the z-scores of each energy term. (iv) Based on the z-scores, we have developed a confidence index, which measures the reliability of a prediction and a possible structure-function relationship based on a statistical analysis of a large data set consisting of threadings of 600 query proteins against the entire FSSP templates. Tests on several benchmark sets indicate that the evolutionary information and other new features of PROSPECT II greatly improve the alignment accuracy. We also demonstrate that the performance of PROSPECT II on fold recognition is significantly better than any other method available at all levels of similarity. Improvement in the sensitivity of the fold recognition, especially at the superfamily and fold levels, makes PROSPECT II a reliable and fully automated protein structure and function prediction program for genome-scale applications.  相似文献   

13.
ToolShop: prerelease inspections for protein structure prediction servers.   总被引:2,自引:0,他引:2  
The ToolShop server offers a possibility to compare a protein tertiary structure prediction server with other popular servers before releasing it to the public. The comparison is conducted on a set of 203 proteins and the collected models are compared with over 20 other programs using various assessment procedures. The evaluation lasts circa one week. AVAILABILITY: The ToolShop server is available at http://BioInfo.PL/ToolShop/. The administrator should be contacted to couple the tested server to the evaluation suite. CONTACT: leszek@bioinfo.pl SUPPLEMENTARY INFORMATION: The evaluation procedures are similar to those implemented in the continuous online server evaluation program, LiveBench. Additional information is available from its homepage (http://BioInfo.PL/LiveBench/).  相似文献   

14.
To improve the prediction accuracy in the regime where template alignment quality is poor, an updated version of TASSER_2.0, namely TASSER_WT, was developed. TASSER_WT incorporates more accurate contact restraints from a new method, COMBCON. COMBCON uses confidence-weighted contacts from PROSPECTOR_3.5, the latest version, PROSPECTOR_4, and a new local structural fragment-based threading algorithm, STITCH, implemented in two variants depending on expected fragment prediction accuracy. TASSER_WT is tested on 622 Hard proteins, the most difficult targets (incorrect alignments and/or templates and incorrect side-chain contact restraints) in a comprehensive benchmark of 2591 nonhomologous, single domain proteins ≤200 residues that cover the PDB at 35% pairwise sequence identity. For 454 of 622 Hard targets, COMBCON provides contact restraints with higher accuracy and number of contacts per residue. As contact coverage with confidence weight ≥3 (Fwt≥3cov) increases, the more improved are TASSER_WT models. When Fwt≥3cov > 1.0 and > 0.4, the average root mean-square deviation of TASSER_WT (TASSER_2.0) models is 4.11 Å (6.72 Å) and 5.03 Å (6.40 Å), respectively. Regarding a structure prediction as successful when a model has a TM-score to the native structure ≥0.4, when Fwt≥3cov > 1.0 and > 0.4, the success rate of TASSER_WT (TASSER_2.0) is 98.8% (76.2%) and 93.7% (81.1%), respectively.  相似文献   

15.

Background  

The prediction of the secondary structure of proteins is one of the most studied problems in bioinformatics. Despite their success in many problems of biological sequence analysis, Hidden Markov Models (HMMs) have not been used much for this problem, as the complexity of the task makes manual design of HMMs difficult. Therefore, we have developed a method for evolving the structure of HMMs automatically, using Genetic Algorithms (GAs).  相似文献   

16.
An algorithm has been developed to improve the success rate in the prediction of the secondary structure of proteins by taking into account the predicted class of the proteins. This method has been called the 'double prediction method' and consists of a first prediction of the secondary structure from a new algorithm which uses parameters of the type described by Chou and Fasman, and the prediction of the class of the proteins from their amino acid composition. These two independent predictions allow one to optimize the parameters calculated over the secondary structure database to provide the final prediction of secondary structure. This method has been tested on 59 proteins in the database (i.e. 10,322 residues) and yields 72% success in class prediction, 61.3% of residues correctly predicted for three states (helix, sheet and coil) and a good agreement between observed and predicted contents in secondary structure.  相似文献   

17.
Wu KP  Lin HN  Chang JM  Sung TY  Hsu WL 《Nucleic acids research》2004,32(17):5059-5065
We develop a knowledge-based approach (called PROSP) for protein secondary structure prediction. The knowledge base contains small peptide fragments together with their secondary structural information. A quantitative measure M, called match rate, is defined to measure the amount of structural information that a target protein can extract from the knowledge base. Our experimental results show that proteins with a higher match rate will likely be predicted more accurately based on PROSP. That is, there is roughly a monotone correlation between the prediction accuracy and the amount of structure matching with the knowledge base. To fully utilize the strength of our knowledge base, a hybrid prediction method is proposed as follows: if the match rate of a target protein is at least 80%, we use the extracted information to make the prediction; otherwise, we adopt a popular machine-learning approach. This comprises our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 7.2 better than that of PSIPRED on DSSP and EVA data, respectively.  相似文献   

18.
19.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained.  相似文献   

20.
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号