首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The multidomain protein kinases BUB1 and BUBR1 (Mad3 in yeast, worms and plants) are central components of the mitotic checkpoint for spindle assembly (SAC). This evolutionarily conserved and essential self-monitoring system of the eukaryotic cell cycle ensures the high fidelity of chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bi-oriented on the mitotic spindle. Despite their amino acid sequence conservation and similar domain organization, BUB1 and BUBR1 perform different functions in the SAC. Recent structural information provides crucial molecular insights into the regulation and recognition of BUB1 and BUBR1, and a solid foundation to dissect the roles of these proteins in the control of chromosome segregation in normal and oncogenic cells.  相似文献   

4.
5.
6.
We have demonstrated for the first time that the steroid metabolite, 2-methoxyestradiol (2-ME) is a powerful growth inhibitor of human osteosarcoma 143 B cell line by pleiotropic mechanisms involving cell cycle arrest at two different points and apoptosis. The ability of 2-ME to inhibit cell cycle at the respective points has been found concentration dependent. 1 microM 2-ME inhibited cell cycle at G1 phase while 10 microM 2-ME caused G2/M cell cycle arrest. As a natural estrogen metabolite 2-ME is expected to perturb the stability of microtubules (MT) in vivo analogously to Taxol--the MT binding anticancer agent. Contrary to 2-ME, Taxol induced accumulation of osteosarcoma cells in G2/M phase of cell cycle only. The presented data strongly suggest two different mechanisms of cytotoxic action of 2-ME at the level of a single cell.  相似文献   

7.
8.
9.
10.
11.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

12.
13.
14.
15.
Currently, the controversy regarding the expression profile and function of BUB1B in different malignancies still exist. In this project, we aimed to explore the role and molecular mechanism of BUB1B in the progression of extrahepatic cholangiocarcinoma (ECC). The expression levels of BUB1B in human ECC were evaluated by immunohistochemistry, western blot, and real-time PCR. The role and mechanism of BUB1B in CCA cell proliferation and invasion were investigated in both in vitro and in vivo functional studies. To indicate the clinical significance, a tissue microarray was performed on 113 ECC patients, followed by univariate and multivariate analyses. The expression of BUB1B was increased in both human CCA tissues and CCA cells. Results from loss-of-function and gain-of-function experiments suggested that the inhibition of BUB1B decreased the proliferation and invasiveness of CCA cells in vitro and in vivo, while overexpression of BUB1B achieved the opposite effect. Furthermore, the activation of c-Jun N-terminal kinase-c-Jun (JNK)-c-Jun pathway was regulated by BUB1B. BUB1B regulated the proliferation and invasiveness of CAA cells in a JNK-c-Jun-dependent manner. Clinically, ECC patients with BUB1B high expression had worse overall survival and recurrence-free survival than those with BUB1B low expression. Multivariate analysis identified that BUB1B was an independent predictor for postoperative recurrence and overall survival of ECC patients. In conclusion, BUB1B promoted ECC progression via JNK/c-Jun pathways. These findings suggested that BUB1B could be a potential therapeutic target and a biomarker for predicting prognosis for ECC patients.Subject terms: Bile duct cancer, Bile duct cancer  相似文献   

16.
17.
18.
19.
Newly formed centrioles in cycling cells undergo a maturation process that is almost two cell cycles long before they become competent to function as microtubule-organizing centers and basal bodies. As a result, each cell contains three generations of centrioles, only one of which is able to form cilia. It is not known how this long and complex process is regulated. We show that controlled Plk1 activity is required for gradual biochemical and structural maturation of the centrioles and timely appendage assembly. Inhibition of Plk1 impeded accumulation of appendage proteins and appendage formation. Unscheduled Plk1 activity, either in cycling or interphase-arrested cells, accelerated centriole maturation and appendage and cilia formation on the nascent centrioles, erasing the age difference between centrioles in one cell. These findings provide a new understanding of how the centriole cycle is regulated and how proper cilia and centrosome numbers are maintained in the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号