首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies indicated that nucleophosmin/B23, an abundant nucleolar phosphoprotein, accumulated in the nucleoplasm (B23-translocation) of cells after exposure to selected cytotoxic drugs. Attempts were made to understand the B23-translocation mechanism. This paper reports that: (1) B23-translocation is a reversible process. Upon removal of camptothecin, which induced B23-translocation in HeLa cells, nucleophosmin/B23 relocalized into nucleoli within 2 h. Relocation occurs in the presence of cycloheximide which inhibits new protein synthesis. There is no reduction or degradation of nucleophosmin/B23 detected during drug treatments. Nucleophosmin/B23 has a half-life of 18-20 h. Taken together, these results indicate that B23-translocation is a reversible process. Drug treatment causes redistribution of nucleophosmin/B23 in nucleoplasm. (2) Inhibition of RNA synthesis does not cause the B23-translocation. Over 80% of RNA synthesis was inhibited in HeLa cells by treatment with actinomycin D, camptothecin, and methotrexate. While actinomycin D and camptothecin cause B23-translocation in all cells, 40% of methotrexate-treated cells remain untranslocated. (3) There is no significant change of phosphorylation in nucleophosmin/B23 during drug treatment. An identical oligomeric cross-linkage pattern was obtained in drug-treated cells. (4) HeLa cells treated with B23-translocation effective drugs have small and round nucleoli while control cells have large and irregular-shaped nucleoli.  相似文献   

2.
Protein B23/nucleophosmin is a polyfunctional protein existing in cells in numerous structural forms. In this work, for the immunochemical analysis of nucleophosmin we used the antibodies specific to different forms of nucleophosmin, namely, antibodies selectively revealing monomers of all the known forms of this protein and antibodies specific only to isoform B23.1. Homogenates of different rat tissues such as the brain, liver, kidney, lung and heart were used, as well as nuclei from liver and brain cells. For the first time, we show that the structural state of nucleophosmin in brain differs from its state in other tissues, including the liver that is enriched with nucleophosmin. It was revealed that on immunoblots of brain homogenates not only monomeric form of nucleophosmin but also unique SDS-resistant oligomeric forms were detected in the SDS-PAGE. Analysis of nucleophosmin in the cerebellum, cortex, amygdala, brainstem, and hippocampus showed that most enriched with nucleophosmin were hippocampus and cerebellum; on their immunoblots SDS-resistant oligomeric forms of nucleophosmin dominated. Using immunochemical analysis of the protein in primary cultures of cerebellum glial cells and neurons, significant structural differences of nucleophosmin in proliferating glial cells and non-proliferating neurons were revealed for the first time. It was found also that the nucleophosmin content in glial cells is much higher than in neurons and that the main forms of protein B23 in glial cells on immunoblots are the SDS-resistant oligomers, while a monomeric form was present in much smaller quantities. In contrast to glial cells, neurons did not contain such oligomers. In neurons, only trace amounts of a monomeric form of nucleophosmin were found, which were undetectable by the antibodies specific to isoform B23.1.  相似文献   

3.
The structural state of two major nucleolar proteins, UBF and B23/nucleophosmin (both monomeric and oligomeric forms), was for the first time established in HeLa cells treated with apoptosis inducers: tumor necrosis factor (TNF-alpha), emetine, and their combination. The treatment of the cells with either TNF-alpha or emetine did not induce apoptosis and affect the state of UBF and nucleophosmin (both monomers and oligomers). Apoptosis was rather pronounced only if HeLa cells were treated with a mixture of TNF-alpha and emetine. States of the UBF and B23 proteins were analyzed in samples containing 25, 45, and 100% of cells with apoptotic nuclei. It was shown by immunoblotting that TNF-alpha-induced apoptosis of HeLa cells was associated with proteolysis of UBF and production of a 76-kD fragment, the content of which increased in correlation with the fraction of apoptotically changed cells. The N- and C-terminal amino acid sequences of UBF and its 76-kD fragment were characterized, and the site of the apoptosis-induced specific proteolysis was identified. As differentiated from UBF, protein B23 did not undergo proteolytic degradation during the TNF-alpha-induced apoptosis of HeLa cells and its content was unchanged even in the cell fraction with fragmentation of virtually all nuclei. However, the ratio between the monomeric and oligomeric states of B23 protein was changed in apoptotic cells, and apoptosis-specific forms of nucleophosmin were detected.  相似文献   

4.
Toxoplasma gondii GRA10 expressed as a GFP-GRA10 fusion protein in HeLa cells moved to the nucleoli within the nucleus rapidly and entirely. GRA10 was concentrated specifically in the dense fibrillar component of the nucleolus morphologically by the overlap of GFP-GRA10 transfection image with IFA images by monoclonal antibodies against GRA10 (Tg378), B23 (nucleophosmin) and C23 (nucleolin). The nucleolar translocalization of GRA10 was caused by a putative nucleolar localizing sequence (NoLS) of GRA10. Interaction of GRA10 with TATA-binding protein associated factor 1B (TAF1B) in the yeast two-hybrid technique was confirmed by GST pull-down assay and immunoprecipitation assay. GRA10 and TAF1B were also co-localized in the nucleolus after co-transfection. The nucleolar condensation of GRA10 was affected by actinomycin D. Expressed GFP-GRA10 was evenly distributed over the nucleoplasm and the nucleolar locations remained as hollows in the nucleoplasm under a low dose of actinomycin D. Nucleolar localizing and interacting of GRA10 with TAF1B suggested the participation of GRA10 in rRNA synthesis of host cells to favor the parasitism of T. gondii.  相似文献   

5.
Antibodies prepared against chemically synthesized peptides predicted from the DNA sequence have been used to detect human mitochondrial gene products. In particular, antibodies directed against either the NH2-terminal decapeptide or the COOH-terminal undecapeptide of cytochrome c oxidase subunit II (COII) were both very effective in immunoprecipitating the previously identified COII polypeptide from an SDS lysate of mitochondria from HeLa cells. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative polypeptide encoded in the unidentified reading frame A6L, which overlaps the ATPase 6 gene, immunoprecipitated specifically a component (#25) of the HeLa cell mitochondrial translation products; antibodies directed against the NH2-terminal octapeptide also precipitated protein 25, although less efficiently. The size of protein 25, as estimated from its electrophoretic mobility, is compatible with its being the unidentified reading frame A6L product. Furthermore, a fingerprinting analysis of this protein after trypsin digestion has given results consistent with this identification.  相似文献   

6.
The DNA-binding protein Ku (p70/p80) was originally discovered through the use of human autoimmune sera. In attempts to search out nucleolar proteins in relation to nucleolar dynamic changes, we developed monoclonal antibodies against nuclear proteins. One antibody, termed LL1, received particular attention since asynchronous cells exhibited tremendous differences in their nucleolar fluorescence intensities after immunostaining. The LL1 protein was proven to be the Ku subunit p80 (Ku80) by cDNA cloning and sequencing. Possible correlations between the heterogeneous distribution of Ku80 in nucleoli and the cell cycle were examined. HeLa cells were synchronized at M phase by arrest with nocodazole, or at the G1/S boundary by sequential treatments with thymidine and aphidicolin. These cells were then released by culturing in fresh medium to allow the cell cycle to progress synchronously. Immunofluorescent detection of Ku80 revealed that nucleoli of the cells at the G1/S boundary had very small amounts of Ku80, which was mainly present in the nucleoplasm. Ku80 was gradually accumulated in nucleoli during S phase and reached the maximum at late S or G2 phase. Immunoblotting experiments showed that cell extracts prepared from different phases of the cell cycle had virtually identical amounts of Ku80. These results suggest that Ku80 migrates from nucleoplasm to nucleoli in a cell cycle-dependent manner.  相似文献   

7.
Antibodies against synthetic peptides derived from the DNA sequence of human cytochrome c oxidase subunit II (COII) have been tested for their capacity to immunoprecipitate the whole enzyme complex. Antibodies against the COOH-terminal undecapeptide of COII (anti-COII-C), when incubated with a Triton X-100 mitochondrial lysate from HeLa cells pulse-labeled with [35S]methionine under conditions selective for mitochondrial protein synthesis and chased for 18 h in unlabeled medium, precipitated the pulse-labeled three largest subunits (mitochondrially synthesized) of cytochrome c oxidase in proportions close to equimolarity. Antibodies against the NH2-terminal decapeptide of COII (anti-COII-N), although equally reactive as the anti-COII-C antibodies with the sodium dodecyl sulfate-solubilized COII, did not precipitate any of the three labeled subunits from the Triton X-100 mitochondrial lysate. In other experiments, all the 13 subunits which have been identified in the mammalian cytochrome c oxidase were immunoprecipitated from a Triton X-100 mitochondrial lysate of cells long-term labeled with [35S]methionine by anti-COII-C antibodies, but not by anti-COII-N antibodies. By contrast, in immunoblots of total mitochondrial proteins dissociated with sodium dodecyl sulfate, the anti-COII-C antibodies reacted specifically only with COII. These results strongly suggest that, in the native cytochrome c oxidase complex, the epitope recognized by the anti-COII-C antibodies is in the COII subunit and that, therefore, in such complex, the COOH-terminal peptide of COII is exposed to antibodies, whereas the NH2-terminal peptide is not accessible.  相似文献   

8.
9.
10.
Amplified nucleoli of Xenopus laevis oocytes contain a major karyoskeletal protein of Mr 145 000 insoluble in low- and high-salt buffer as well as in non-denaturing detergents. Electron microscopic localization on native and high-salt extracted nucleoli using specific murine antibodies against this polypeptide and gold-coupled antibodies for visualization reveals that the Mr 145 000 protein is located in coils of filaments of ca 4 nm diameter. In addition, this protein occurs in the medusoid filament bodies (MFBs) present in the nucleolar cortex and free in the nucleoplasm. In somatic cells of tissues and in A6 kidney epithelial cells grown in vitro the Mr 145 000 polypeptide or an immunologically related protein is also organized in coiled aggregates of filaments 4-12 nm in diameter present both in the periphery of nucleoli and free in the nucleoplasm. We discuss a possible role of this protein as a karyoskeletal support involved in the storage and transport of preribosomal particles.  相似文献   

11.
The retro-enantio-analogue of peptide 66–77 of the chemokine MCP-1 and two hexapeptide fragments 66–71 and 72–77 of the C-terminal sequence of this protein were synthesized using the Fmoc strategy of solid phase peptide synthesis. The effect of the synthetic peptides upon the MCP-1-stimulated migration of THP-1 mononuclear cells was studied in vitro. The activity of the retro-enantio analogue was found to be comparable with that of the initial peptide 66–77: both peptides inhibit the migration of monocytes and granulocytes into inflammation zones of experimental animals.  相似文献   

12.
NPM (nucleophosmin/B23) is a nucleolar phosphoprotein abundant in tumor cells. It dissociates from nucleoli of cells after treatments with various anticancer drugs. To determine the domain of NPM responsible for nucleolar binding, the N- and C-terminal halves of NPM were fused to GFP (green fluorescent protein) and introduced into HeLa cells. The N-terminal half (aa 1-150) of NPM (GFP-NPM(N)) was found localized in the nucleoli. A stable transformant of GFP-NPM(N) in HeLa cells was prepared and tested for association to nucleoli after anticancer drug treatments. GFP-NPM(N) dissociates from nucleoli after treatments with daunomycin, actinomycin D, camptothecin, and toyocamycin. The dissociation is time- and dose-dependent, and correlates with the cytotoxicity induced by the drugs. These results indicate that a stable transformant of GFP-NPM(N) in HeLa cells may be useful for the screening of anticancer drugs.  相似文献   

13.
We have in the present study explored the anticancer activity against human Burkitt's lymphoma cells (Ramos) of a series of small linear and cyclic tetrapeptides containing a β2,2‐amino acid with either two 2‐naphthyl‐methylene or two para‐CF3‐benzyl side chains, along with their interaction with the main plasma protein human serum albumin (HSA). The cyclic and more amphipathic tetrapeptides revealed a notably higher anticancer potency against Ramos cells [50% inhibitory concentration (IC50) 11–70 μM] compared to the linear tetrapeptide counterparts (IC50 18.7 to >413 μM). The most potent cyclic tetrapeptide c3 had a 16.5‐fold preference for Ramos cells compared to human red blood cells, whereas the cyclic tetrapeptide c1 both showed low hemolytic activity and displayed the overall highest (2.9‐fold) preference for Ramos cells (IC50 23 μM) compared to healthy human lung fibroblast cells (MRC‐5). Investigating the interaction of selected tetrapeptides and recently reported hexapeptides with HSA revealed that the peptides bind to drug site II of HSA in the 22–28 μM range, disregarding size and overall structure. NMR and in silico molecular docking experiments identified the lipophilic residues as responsible for the interaction, but in vitro studies showed that the anticancer potency of the peptides varied in the presence of HSA and that c3 remained the most potent peptide. Based on our findings, we call for implementing serum albumin binding in development of anticancer peptides, as it may have implications for future administration and systemic distribution of peptide‐based cancer drugs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The role of molecular mimicry in the spondyloarthropathies was investigated with respect to the epitopes involved. mAb were produced against a synthetic peptide whose sequence was derived from a polymorphic region of the HLA-B27 molecule (amino acids 63-83). Two antibodies (J7F2 and H2B6) were selected for study on the basis of their ability to react with bacterial envelope proteins (ELISA) and B27-positive cells (immunofluorescence). J7F2 reacted preferentially with B27-positive cells and neither antibody reacted with MHC class I negative cells. Based on SDS-PAGE blot analysis of bacterial envelope proteins, the pattern of reactivity for both antibodies (against 36- and 19-kDa proteins) was the same as that for a third monoclonal produced against bacterial envelope and reactive with B27-positive cells. This apparent epitope similarity was investigated by using synthetic peptides to inhibit binding of the monoclonals. The B27 synthetic peptide and a smaller peptide derived from it were efficient inhibitors of antipeptide and antibacterial antibody binding to bacterial Ag and B27-positive cells. These studies provide insight into the molecular basis of cross-reactivity between bacterial proteins and MHC class I molecules.  相似文献   

15.

Aims

The findings of our earlier investigations indicated that cadmium (Cd) could induce some nucleolar materials containing the argyrophilic proteins scattered in the nuclei and located in cytoplasm in the root tip cells of Allium sative and Vicia faba. However, what kinds of nucleolar proteins are affected has not been reported up to now. In order to further confirm the cytological effects of Cd on nucleolus and nucleolar proteins, alterations in the cellular localization and expression of three major nucleolar proteins: nucleophosmin, fibrillarin and nucleolin were investigated under the treatment with Cd in the root tip cells of V. faba in this study.

Methods

Silver methods, Indirect immunofluorescent microscopy; Western blotting.

Results

The obvious toxic effects on nucleoli in the cells were observed after Cd treatment. Nucleolar proteins, nucleophosmin, fibrillarin, and nucleolin in root tip cells exposed to Cd (50 μM) for 48 h were translocated from nucleolus to nucleoplasm and cytoplasm and expression of the three major nucleolar proteins was relatively higher when compared with control.  相似文献   

16.
A protein factor named S-II that stimulates RNA polymerase II was previously purified from Ehrlich ascites tumor cells [1]. In this work using an antibody prepared against purified S-II, the localization of S-II in the cell was investigated by an indirect immunofluorescence technique. In 3T3 cells, specific immunofluorescence was detected only in the nucleoplasm where RNA polymerase II is located, and not in the nucleoli where RNA polymerase I is present. In Ehrlich ascites tumor cells fluorescence was detected mainly in the nucleoplasm, although some fluorescence was also detectable in the cytoplasm, possibly due to leak of S-II from the nuclei during preparation of the immunofluorescent samples. In metaphase cells fluorescent was not found on chromosomes but throughout the cytoplasm. These findings suggest that S-II is a nuclear protein and that it spreads into the cytoplasm without being attached to chromosomes in metaphase, but is reassembled into the nucleoplasm in the interphase. Specific immunofluorescence was also detected in the nuclei of HeLa cells and salivary glands cells of flesh-fly larvae, suggesting that the nucleoplasm of these heterologous cells contains proteins immunologically cross-reactive with the antibody against S-II.  相似文献   

17.
18.
19.
The objective of this study was to analyze the immunogenicity and antigenicity of the V3 domain (Cys313–Cys346) of the external envelope glycoprotein gp125 of SIVmac251. The corresponding peptide was synthesized and characterized as linear and cyclic peptides. Our results showed that this region, as for HIV‐1, contained an immunodominant epitope. The antigenicity was similar for the linear and cyclic peptides when tested against a panel of 15 sera from SIV infected macaques. Similarly, both peptide structures presented similar immunogenicity as shown by the characterization of the anti‐peptide antibodies produced in rabbits against the cyclic and linear forms. But, unexpectedly, the antibodies produced against linear peptides recognized with a relatively higher intensity the native envelope gp140 than those produced against the cyclic structure. Furthermore, we showed that these antibodies recognized better the deglycosylated form of the glycoprotein. But, in contrast to the neutralizing activity obtained with anti‐V3 peptides from HIV‐1, no antiviral activity was obtained with antibodies generated against linear or cyclic SIVmac V3 peptides. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Previous studies showed that localization of nucleophosmin/B23 (NPM) to nucleoli requires adequate cellular GTP levels (Finchet al., J Biol Chem 268, 5823–5827, 1993). In order to study whether hydrolysis of GTP plays a role in NPM localization, we introduced a nonhydrolyzable GTP analog into HeLa cells. Cells were first depleted of GTP with the IMP dehydrogenase inhibitor, mycophenolic acid (MA), to induce translocation of NPM from the nucleoli to the nucleoplasm. Non-hydrolyzable GTP analogs were then introduced into cells by electroporation. We found that introduction of the non-hydrolyzable analog, GTPS, was effective in restoring NPM localization to nucleoli. Cells incubated in medium containing G-nucleotides without electroporation showed no effect. To reduce the possibility that cells use guanine from degraded nucleotide to supplement GTP pools via salvage pathways, experiments were also performed in the presence of (6-mercaptopurine) 6MP, a competitive inhibitor of the salvage enzyme, HGPRT (hypoxanthine guanine phosphoribosyl transferase), in addition to MA. Under these conditions, introduction of GTPS still effectively restored the localization of NPM into nucleoli. This study demonstrates that electroporation can be used effectively to introduce nucleotides into cultured cells without excessive loss of viability. Our results also indicate that the GTP dependent localization of NPM to the nucleoli may not require GTP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号