首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenothiazines (PTZ) such as chlorpromazine (CPZ) or trifluoperazine (TPZ) induced a sustained divalent cation-permeable channel activity when applied on either side of inside-out patches or on external side of cell-attached patches of adult rat ventricular myocytes. The percentage of active patches was 20%. In the case of CPZ, the K dof the dose-response curve was 160 m. CPZ-activated channels were potential-independent in the physiological range of membrane potential and were permeable to several divalent ions (Ba2+, Ca2+, Mg2+, Mn2+). At least three levels of currents were usually detected with conductances of 23, 50 and 80 pS in symmetrical 96 mm Ba2+ solution and 17, 36 and 61 pS in symmetrical 96 mm Ca2+ solution. Saturation curves corresponding to the three main conductances determined in Ba2+ symmetrical solutions (tonicity compensated with choline-Cl) gave maximum conductances of 36, 81 and 116 pS (with corresponding half-saturating concentration constants of 31.5, 38 and 34.5 mm). The corresponding conductance values were estimated to 1.7, 3.3 and 5.2 pS in symmetrical 1.8 mm Ba2+ and to 1.1, 2.4 and 3.7 pS in symmetrical 1.8 mm Ca2+ (the value in normal Tyrode solution). Channels were poorly permeable to monovalent cations, such as Na, with a P Ba/P Na ratio of 10. A PTZ-induced channel activity similar to that described in cardiac cells was also observed in cultured rat aortic smooth muscle cells but not in cultured neuroblastoma cells.PTZ-activated channels described in cardiac cells appear very similar to the sporadically active divalent ion permeable channels described in a previous paper (Coulombe et al., 1989). Surprisingly, when 100 m CPZ were applied to myocytes studied in the whole-cell configuration, and maintained at a holding potential of –80 mV in the presence of 24 mm external Ca2+ or Ba2+, no detectable macroscopic inward current could be observed, whereas the L-type Ca2+ current triggered by depolarizing pulses was markedly and reversibly reduced. The possible reasons are discussed.  相似文献   

2.
Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.  相似文献   

3.
T J Hallam  T J Rink 《FEBS letters》1985,186(2):175-179
Agonists such as thrombin, PAF (platelet-activating factor) and ADP are known to cause a larger elevation in [Ca2+]i in quin2-loaded platelets in the presence of extracellular Ca2+ than in its absence. The simplest interpretation of these observations is that in the presence of extracellular calcium there is an influx component across the cell surface. In the presence of Mn2+, a divalent cation which is known to avidly bind to quin2 and to quench its fluorescence, the agonists produce a small initial rise in quin2 fluorescence followed by a decrease in fluorescence to well below the resting level. The result indicates entry of Mn2+, presumably through some form of receptor-operated Ca2+ channel.  相似文献   

4.
Mitochondrial membrane potential in cardiac myocytes   总被引:2,自引:0,他引:2  
Mitochondria are involved in cellular functions that transcend the traditional role of these organelles as the energy factory of the cell. Their relative inaccessibility and the difficulties involved in attempts to study them in their natural environment -- the cytosol -- has delayed much of this understanding and they still have many secrets to yield. One of the relatively new fields in this respect is undoubtedly the analysis of mitochondrial membrane potential. The realization that its alteration may have important pathophysiological consequences has led to an increased interest in measuring this variable in a variety of biological settings, including cardiovascular diseases. Measurements of mitochondrial membrane potential tell us much about the role of mitochondria in normal cell function and in processes leading to cell death. However, we must be aware of the limitations of using isolated mitochondria, single cells and different fluorescent indicators.  相似文献   

5.
Extracellular ATP has vasodilatory and inotropic effects in the heart. We have demonstrated that extracellular ATP, in a concentration-dependent manner (10 nM-0.1 mM), increased [Ca2+]i in suspensions of isolated fura-2-loaded rat cardiac ventricular myocytes (maximum 96 +/- 10% increase over basal levels, SEM, n = 12, P less than 0.01). The increase in [Ca2+]i was often biphasic, with an initial fast phase (less than 1 s) of low amplitude, followed by a slower phase of higher amplitude. A second application of ATP had little effect, and ATP abolished the effect of subsequent electrical stimulations, even through the cells were still able to respond with an increase in [Ca2+]i to KCl-induced depolarization or stimulation by caffeine. Pretreatment of cells with nifedipine, verapamil, caffeine, ryanodine, or 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride attenuated the effect of extracellular ATP on [Ca2+]i, and binding of extracellular free calcium by excess EGTA completely abolished the effects of extracellular ATP and electrical stimulation. Extracellular ATP increased bisoxonol fluorescence in ventricular myocytes, indicating depolarization of the sarcolemma. Pretreatment of the myocytes with tetrodotoxin (50 microM), or replacement of NaCl in the incubation buffer with the impermeant cation N-methyl-D-glucamine, suppressed the extracellular ATP effect on [Ca2+]i. ADP and AMP had smaller effects on [Ca2+]i than ATP; adenosine had no effect. ATP analogues showed the following rank order of potency in increasing [Ca2+]i or bisoxonol fluorescence: ATP greater than or equal to 2-methylthioATP much greater than adenosine 5'-O-[3-thio]triphosphate greater than adenosine 5'-[alpha, beta-methylene]triphosphate approximately adenosine 5'-[beta, gamma-methylene]triphosphate approximately adenosine 5'-[beta, gamma-imino]triphosphate greater than adenosine. These data are consistent with the presence of purinoceptors (P2Y subtype) on the sarcolemma of cardiac ventricular myocytes of the rat, which upon activation lead to depolarization and activation of cation channels of the sarcolemma and flux of extracellular Ca2+ into the cells. This may result in further flux of Ca2+ into the cytosol from intracellular stores. The effects of extracellular ATP on [Ca2+]i in rat cardiac ventricular myocytes may, in part, explain the direct inotropic effects of extracellular ATP on the mammalian heart.  相似文献   

6.
Summary This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl (10.160.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V m ) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO 3 >Cl>K+>Aspartate (2.0410.18 to 0.090.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV m at a preferred value in the face of events which would otherwise perturbV m .  相似文献   

7.
White light (25 watts per square meter) induced an increase in plasma membrane K+-channel activity and a 30- to 70-millivolt transient membrane depolarization (completed in 2-3 minutes) in Arabidopsis thaliana leaf mesophyll cells. Transport characteristics of three types of ion channels in the plasma membrane were determined using inside-out patches. With 220 millimolar K+ on the cytoplasmic side of the patch and 50 millimolar K+ in the pipette, (220/50 K), the open-channel current-voltage curves of these channels were sigmoidal and consistent with an enzyme kinetic model. Two channel types were selective for K+ over Na+ and Cl. One (named PKC1) had a maximum conductance (Gmax) of 44 picosiemens at a membrane voltage (Vm) of −65 mV in (220/50 K) and is stimulated by light. The other (PKC2) had Gmax = 66 picosiemens at Vm = 60 millivolts in (220/50 K). The third channel type (PCC1) transported K+ and Na+ about equally well but not Cl. It had Gmax = 109 picosiemens at Vm = 55 millivolts in (250/50 K) with 10 millimolar Ca2+ on the cytoplasmic side. Reducing Ca2+ to 0.1 millimolar increased PCC1 open-channel currents by approximately 50% in a voltage-independent manner. Averaged over time, PKC2 and PCC1 currents strongly outward rectified and PKC1 currents did so weakly. Reductants (1 millimolar dithiothreitol or 10 millimolar β-mercaptoethanol) added to the cytoplasmic side of an excised patch increased the open probability of all three channel types.  相似文献   

8.
The aim of the present work was to characterize Na(+) currents through nonselective cation channels (NSCCs) in protoplasts derived from root cells of Arabidopsis. The procedure of the protoplast isolation was modified to increase the stability of Arabidopsis root protoplasts in low external Ca(2+) by digesting tissue in elevated Ca(2+). Experiments in whole-cell and outside-out modes were carried out. We found that Na(+) currents in Arabidopsis root protoplasts were mediated by cation channels that were insensitive to externally applied tetraethylammonium(+) and verapamil, had no time-dependent activation (permanently opened or completely activated within 1-2 ms), were voltage independent, and were weakly selective for monovalent cations. The selectivity sequence was as follows: K(+) (1.49) > NH(4)(+) (1.24) > Rb(+) (1.15) approximately equal to Cs(+) (1.10) approximately equal to Na(+) (1.00) > Li(+) (0.73) > tetraethylammonium(+) (0.47). Arabidopsis root NSCCs were blocked by H(+) (pK approximately equal to 6.0), Ca(2+) (K(1/2) approximately equal to 0.1 mM), Ba(2+), Zn(2+), La(3+), Gd(3+), quinine, and the His modifier diethylpyrocarbonate. They were insensitive to most organic blockers (nifedipine, verapamil, flufenamate, and amiloride) and to the SH-group modifier p-chloromercuriphenyl sulfonic acid. Voltage-insensitive, Ca(2+)-sensitive single channels were also resolved. Properties of Arabidopsis root NSCCs are discussed and compared with characteristics of similar conductances studied previously in plants and animals. It is suggested that NSCCs present a distinct group of plant ion channels, mediating toxic Na(+) influx to the cell and probably having other important roles in physiological processes of plants.  相似文献   

9.
Strophanthidin inhibits KATP channels in 2,4-dinitrophenol-poisoned heart cells (). The current study shows that the Na/K pump interacts with KATP current (IK-ATP) via submembrane ATP depletion in isolated giant membrane patches and in nonpoisoned guinea pig cardiac cells in whole-cell configuration. IK-ATP was inhibited by ATP, glibenclamide, or intracellular Cs+. Na/K pump inactivation by substitution of cytoplasmic Na+ for Li+ or N-methylglucamine decreased both IK-ATP by 1/3 (1 mM ATP, zero calcium), and IC50 of ATP for IK-ATP (0.3 +/- 0.1 mM) by 2/5. The Na+/Li+ replacement had no effect on IK-ATP at low pump activity ([ATP] </= 0.1 mM or 100 microM ouabain) or when IK-ATP was completely inhibited by 10 mM ATP. In whole-cell configuration, ouabain inhibited up to 60% of inwardly rectifying IK-ATP at 1 mM ATP in the pipette but not at 10 mM ATP and 10 mM phosphocreatine when IK-ATP was always blocked. However, mathematical simulation of giant-patch experiments revealed that only 20% of ATP depletion may be attributed to the ATP concentration gradient in the bulk solution, and the remaining 80% probably occurs in the submembrane space.  相似文献   

10.
11.
12.
Ionic selectivity of Nitella flexilis plasmalemma cation channels is studied by voltage-clamp method with consecutive replacing of cations in the bathing medium. The selectivity sequence received by measuring the ionic current reversal potentials, psi alpha is: Ba++ approximately equal to Sr++ approximately equal to Ca++ greater than Mg++ greater than Cs+ approximately equal to K+ greater than Na+ greater than Li+. An analysis of results based on the three-barrier channel model suggests that when ions of the same valency are compared, the channel selectivity is determined by specific interactions between the ion and the nearest water molecules, which is possible both in a narrow and wide pore. On the other hand, when monovalent and divalent ions are compared the effects of ions binding in the channel or near the membrane surface prevail, thus causing the channel preference for divalent cations.  相似文献   

13.
14.
A large conductance (~300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca(2+) release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities.  相似文献   

15.
Summary Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no rundown in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2mm), cadmium (0.5mm) or nickel (3mm), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10–5 m bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5×10–6 m Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential.  相似文献   

16.
Magnesium regulates various ion channels in many tissues, including those of the cardiovascular system. General mechanisms by which intracellular Mg(2+) (Mg(i)(2+)) regulates channels are presented. These involve either a direct interaction with the channel, or an indirect modification of channel function via other proteins, such as enzymes or G proteins, or via membrane surface charges and phospholipids. To provide an insight into the role of Mg(i)(2+) in the cardiovascular system, effects of Mg(i)(2+) on major channels in cardiac and smooth muscle cells and the underlying mechanisms are then reviewed. Although Mg(i)(2+) concentrations are known to be stable, conditions under which they may change exist, such as following stimulation of beta-adrenergic receptors and of insulin receptors, or during pathophysiological conditions such as ischemia, heart failure or hypertension. Modifications of cardiovascular electrical or mechanical function, possibly resulting in arrhythmias or hypertension, may result from such changes of Mg(i)(2+) and their effects on cation channels.  相似文献   

17.
Calcium plays an essential role in excitation-contraction coupling in muscle, and derangements in calcium handling can produce a variety of potentially harmful conditions, especially in cardiac muscle. In cardiac tissue specialized invaginations of the sarcolemma, called T-tubules, penetrate deep into each sarcomere, and depolarization of the SL leads to an influx of calcium through voltage-sensitive channels in the T-tubules that in turn triggers further calcium release from the sarcoplasmic reticulum via ryanodine-sensitive calcium channels. Under certain conditions, such as elevated external Ca2+, cardiac cells can release calcium from the sarcoplasmic reticulum spontaneously, producing a calcium ’spark’ and propagating traveling waves of elevated Ca2+ concentration, without depolarization of the SL (Wier and Blatter, 1991a, Cell Calcium 12, 241–254; Williams, 1993, Cell Calcium 14, 724–735; Cheng et al., 1993a, Science 262, 740–744). However, under normal resting conditions these potentially harmful waves seldom occur. In this paper we investigate the role of the periodic distribution of ryanodine-sensitive channels in determining whether a spark can trigger a wave, using a modification of the kinetic model proposed by Tang and Othmer, 1994b, Biophys. J. 67, 2223–2235, for calcium-induced calcium release. We show that the spatial localization of these channels near the T-tubules has a significant effect on both wave propagation and the onset of oscillations in this system. Spatial localization provides a possible explanation for the differing effects of various experimental protocols on the system’s ability to propagate a traveling wave. Supported in part by NIH Grant GM29123.  相似文献   

18.
Control of contraction and relaxation by membrane potential was investigated in voltage-clamped guinea pig ventricular myocytes at 37 degrees C. Depolarization initiated phasic contractions, followed by sustained contractions that relaxed with repolarization. Corresponding Ca(2+) transients were observed with fura 2. Sustained responses were ryanodine sensitive and exhibited sigmoidal activation and deactivation relations, with half-maximal voltages near -46 mV, which is characteristic of the voltage-sensitive release mechanism (VSRM) for sarcoplasmic reticulum Ca(2+). Inactivation was not detected. Sustained responses were insensitive to inactivation or block of L-type Ca(2+) current (I(Ca-L)). The voltage dependence of sustained responses was not affected by changes in intracellular or extracellular Na(+) concentration. Furthermore, sustained responses were not inhibited by 2 mM Ni(2+). Thus it is improbable that I(Ca-L) or Na(+)/Ca(2+) exchange generated these sustained responses. However, rapid application of 200 microM tetracaine, which blocks the VSRM, strongly inhibited sustained contractions. Our study indicates that the VSRM includes both a phasic inactivating and a sustained noninactivating component. The sustained component contributes both to initiation and relaxation of contraction.  相似文献   

19.
Summary This study is concerned with the characterization of the ionic currents in the vacuolar membrane (tonoplast) of plant cells. Voltage patch-clamp experiments at the whole vacuole and single channel levels were employed to study the effects of cytoplasmic chloride on the tonoplast inward rectifying currents of sugar beet cultured cells. Whole vacuole experiments showed that removal of cytoplasmic chloride induced a decrease in the level of the inward currents, an effect that was reversed upon returning to control levels of cytoplasmic chloride. Substitution of cytoplasmic chloride by any other anion (organic or inorganic) resulted in a reduction in the level of the inward currents. At a given negative tonoplast potential, the inward currents showed a linear relationship with the concentration of cytoplasmic chloride between 10 and 100 mM, with the slope of these relationships increasing as the potential was made more negative. Single channel experiments showed that reduction of cytoplasmic chloride changed the gating mechanism of the channels without affecting the single channel conductance. Reduction of cytoplasmic chloride caused a decrease in the open probability of the tonoplast cation channels by reducing their mean open time and by inducing the appearance of an additional closed state.This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号