首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large conductance (~300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca(2+) release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities.  相似文献   

2.
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ~75% and single RyR2 opening frequency ~150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.  相似文献   

3.
Discrete localized fluorescence transients due to openings of a single plasma membrane Ca(2+) permeable cation channel were recorded using wide-field digital imaging microscopy with fluo-3 as the Ca(2+) indicator. These transients were obtained while simultaneously recording the unitary channel currents using the whole-cell current-recording configuration of the patch-clamp technique. This cation channel in smooth muscle cells is opened by caffeine (Guerrero, A., F.S. Fay, and J.J. Singer. 1994. J. Gen. Physiol. 104:375-394). The localized fluorescence transients appeared to occur at random locations on the cell membrane, with the duration of the rising phase matching the duration of the channel opening. Moreover, these transients were only observed in the presence of sufficient extracellular Ca(2+), suggesting that they are due to Ca(2+) influx from the bathing solution. The fluorescence transient is characterized by an initial fast rising phase when the channel opens, followed by a slower rising phase during prolonged openings. When the channel closes there is an immediate fast falling phase followed by a slower falling phase. Computer simulations of the underlying events were used to interpret the time course of the transients. The rapid phases are mainly due to the establishment or removal of Ca(2+) and Ca(2+)-bound fluo-3 gradients near the channel when the channel opens or closes, while the slow phases are due to the diffusion of Ca(2+) and Ca(2+)-bound fluo-3 into the cytoplasm. Transients due to short channel openings have a "Ca(2+) spark-like" appearance, suggesting that the rising and early falling components of sparks (due to openings of ryanodine receptors) reflect the fast phases of the fluorescence change. The results presented here suggest methods to determine the relationship between the fluorescence transient and the underlying Ca(2+) current, to study intracellular localized Ca(2+) handling as might occur from single Ca(2+) channel openings, and to localize Ca(2+) permeable ion channels on the plasma membrane.  相似文献   

4.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca(2+) permeable ion channel using Ca(2+) indicators like fluo-3. These Single Channel Ca(2+) Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca(2+) sparks and Ca(2+) puffs caused by Ca(2+) release from intracellular stores (due to the opening of ryanodine receptors and IP(3) receptors, respectively). In contrast to intracellular Ca(2+) release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca(2+) handling in the vicinity of a channel with a known Ca(2+) influx, to obtain the Ca(2+) current passing through plasma membrane cation channels in near physiological solutions, to localize Ca(2+) permeable ion channels on the plasma membrane, and to estimate the Ca(2+) currents underlying those elementary events where the Ca(2+) currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca(2+) channels, and stretch-activated channels. For the L-type Ca(2+) channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca(2+) currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

5.
Ca(2+) sparks are spatially localized intracellular Ca(2+) release events that were first described in 1993. Sparks have been ascribed to sarcoplasmic reticulum Ca(2+) release channel (ryanodine receptor, RyR) opening induced by Ca(2+) influx via L-type Ca(2+) channels or by spontaneous RyR openings and have been thought to reflect Ca(2+) release from a cluster of RyR. Here we describe a pharmacological approach to study sparks by exposing ventricular myocytes to caffeine with a rapid solution-switcher device. Sparks under these conditions have properties similar to naturally occurring sparks in terms of size and intracellular Ca(2+) concentration ([Ca(2+)](i)) amplitude. However, after the diffusion of caffeine, sparks first appear close to the cell surface membrane before coalescing to produce a whole cell transient. Our results support the idea that a whole cell [Ca(2+)](i) transient consists of the summation of sparks and that Ca(2+) sparks consist of the opening of a cluster of RyR and confirm that characteristics of the cluster rather than the L-type Ca(2+) channel-RyR relation determine spark properties.  相似文献   

6.
Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca(2+) channels. In heart cells, a tight coupling between the gating of single L-type Ca(2+) channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca(2+) channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca(2+) sparks and propagated Ca(2+) waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca(2+) channels. L-type Ca(2+) channels can open without triggering Ca(2+) sparks and triggered Ca(2+) sparks are often observed after channel closure. CICR is a function of the net flux of Ca(2+) ions into the cytosol, rather than the single channel amplitude of L-type Ca(2+) channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca(2+) channels are loosely coupled to RYR through an increase in global [Ca(2+)] due to an increase in the effective distance between L-type Ca(2+) channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.  相似文献   

7.
8.
The contraction of adult mammalian ventricular cardiomyocytes is triggered by the influx of Ca2+ ions through sarcolemmal L-type Ca2+ channels (LCCs). However, the gating properties of unitary LCCs under physiologic conditions have remained elusive. Towards this end, we investigated the voltage-dependence of the gating kinetics of unitary LCCs, with a physiologic concentration of Ca2+ ions permeating the channel. Unitary LCC currents were recorded with 2 mM external Ca2+ ions (in the absence of LCC agonists), using cell-attached patches on K-depolarized adult rat ventricular myocytes. The voltage-dependence of the peak probability of channel opening (Po vs. Vm) displayed a maximum value of 0.3, a midpoint of −12 mV, and a slope factor of 8.5. The maximum value for Po of the unitary LCC was significantly higher than previously assumed, under physiologic conditions. We also found that the mean open dwell time of the unitary LCC increased twofold with depolarization, ranging from 0.53 ± 0.02 ms at −30 mV to 1.08 ± 0.03 ms at 0 mV. The increase in mean LCC open time with depolarization counterbalanced the decrease in the single LCC current amplitude; the latter due to the decrease in driving force for Ca2+ ion entry. Thus, the average amount of Ca2+ ions entering through an individual LCC opening (∼300-400 ions) remained relatively constant over this range of potentials. These novel results establish the voltage-dependence of unitary LCC gating kinetics using a physiologic Ca2+ ion concentration. Moreover, they provide insight into local Ca2+-induced Ca2+ release and a more accurate basis for mathematical modeling of excitation-contraction coupling in cardiac myocytes.  相似文献   

9.
The predicted TM10 transmembrane sequence, (4844)IIFDITFFFFVIVILLAIIQGLII(4867), has been proposed to be the pore inner helix of the ryanodine receptor (RyR) and to play a crucial role in channel activation and gating, as with the inner helix of bacterial potassium channels. However, experimental evidence for the involvement of the TM10 sequence in RyR channel activation and gating is lacking. In the present study, we have systematically investigated the effects of mutations of each residue within the 24-amino acid TM10 sequence of the mouse cardiac ryanodine receptor (RyR2) on channel activation by caffeine and Ca(2+). Intracellular Ca(2+) release measurements in human embryonic kidney 293 cells expressing the RyR2 wild type and TM10 mutants revealed that several mutations in the TM10 sequence either abolished caffeine response or markedly reduced the sensitivity of the RyR2 channel to activation by caffeine. By assessing the Ca(2+) dependence of [(3)H]ryanodine binding to RyR2 wild type and TM10 mutants we also found that mutations in the TM10 sequence altered the sensitivity of the channel to activation by Ca(2+) and enhanced the basal activity of [(3)H]ryanodine binding. Furthermore, single I4862A mutant channels exhibited considerable channel openings and altered gating at very low concentrations of Ca(2+). Our data indicate that the TM10 sequence constitutes an essential determinant for channel activation and gating, in keeping with the proposed role of TM10 as an inner helix of RyR. Our results also shed insight into the orientation of the TM10 helix within the RyR channel pore.  相似文献   

10.
Calcium (Ca2+)-induced Ca2+ release (CICR) in cardiac myocytes exhibits high gain and is graded. These properties result from local control of Ca2+ release. Existing local control models of Ca2+ release in which interactions between L-Type Ca2+ channels (LCCs) and ryanodine-sensitive Ca2+ release channels (RyRs) are simulated stochastically are able to reconstruct these properties, but only at high computational cost. Here we present a general analytical approach for deriving simplified models of local control of CICR, consisting of low-dimensional systems of coupled ordinary differential equations, from these more complex local control models in which LCC-RyR interactions are simulated stochastically. The resulting model, referred to as the coupled LCC-RyR gating model, successfully reproduces a range of experimental data, including L-Type Ca2+ current in response to voltage-clamp stimuli, inactivation of LCC current with and without Ca2+ release from the sarcoplasmic reticulum, voltage-dependence of excitation-contraction coupling gain, graded release, and the force-frequency relationship. The model does so with low computational cost.  相似文献   

11.
12.
13.
Although a considerable number of studies have characterized inactivation and facilitation of macroscopic L-type Ca(2+) channel currents, the single channel properties underlying these important regulatory processes have only rarely been examined using Ca(2+) ions. We have compared unitary L-type Ca(2+) channel currents recorded with a low concentration of Ca(2+) ions with those recorded with Ba(2+) ions to elucidate the ionic dependence of the mechanisms responsible for the prepulse-dependent modulation of Ca(2+) channel gating kinetics. Conditioning prepulses were applied across a wide range of voltages to examine their effects on the subsequent Ca(2+) channel activity, recorded at a constant test potential. All recordings were made in the absence of any Ca(2+) channel agonists. Moderate-depolarizing prepulses resulted in a decrease in the probability of opening of the Ca(2+) channels during subsequent test voltage steps (inactivation), the extent of which was more dramatic with Ca(2+) ions than Ba(2+) ions. Facilitation, or increase of the average probability of opening with strong predepolarization, was due to long-duration mode 2 openings with Ca(2+) ions and Ba(2+) ions, despite a decrease in Ca(2+) channel availability (inactivation) under these conditions. The degree of both prepulse-induced inactivation and facilitation decreased with increasing Ba(2+) ion concentration. The time constants (and their proportions) describing the distributions of Ca(2+) channel open times (which reflect mode switching) were also prepulse-, and ion-dependent. These results support the hypothesis that both prior depolarization and the nature and concentration of permeant ions modulate the gating properties of cardiac L-type Ca(2+) channels.  相似文献   

14.
15.
Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca(2+) waves that propagated with mean velocities of approximately 14 micrometer/s, reaching approximately 80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca(2+) waves, although the velocity and number of cells communicated by the Ca(2+) signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca(2+) signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P(2)-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca(2+) signals in wild-type neonatal mouse cardiac myocytes. Activation of P(2)-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca(2+) signals. The importance of such ATP-mediated Ca(2+) signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.  相似文献   

16.
To study the function and regulation of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel, we expressed the RyR2 proteins in a Chinese hamster ovary (CHO) cell line, and assayed its function by single channel current recording and confocal imaging of intracellular Ca(2+) ([Ca(2+)](i)). The 16-kb cDNA encoding the full-length RyR2 was introduced into CHO cells using lipofectAmine and electroporation methods. Incorporation of microsomal membrane vesicles isolated from these transfected cells into lipid bilayer membrane resulted in single Ca(2+) release channel activities similar to those of the native Ca(2+) release channels from rabbit cardiac muscle SR membranes, both in terms of gating kinetics, conductance, and ryanodine modification. The expressed RyR2 channels were found to exhibit more frequent transitions to subconductance states than the native RyR2 channels and RyR1 expressed in CHO cells. Caffeine, an exogenous activator of RyR, induced release of [Ca(2+)](i) from these cells. Confocal imaging of cells expressing RyR2 did not detect spontaneous or caffeine-induced local Ca(2+) release events (i.e., "Ca(2+) sparks") typically seen in cardiac muscle. Our data show that the RyR2 expressed in CHO cells forms functional Ca(2+) release channels. Furthermore, the lack of localized Ca(2+) release events in these cells suggests that Ca(2+) sparks observed in cardiac muscle may involve cooperative gating of a group of Ca(2+) release channels and/or their interaction with muscle-specific proteins.  相似文献   

17.
Anion channels are extensively expressed in the heart, but their roles in cardiac excitation-contraction coupling (ECC) are poorly understood. We, therefore, investigated the effects of anion channels on cardiac ventricular ECC. Edge detection, fura 2 fluorescence measurements, and whole cell patch-clamp techniques were used to measure cell shortening, the intracellular Ca(2+) transient, and the L-type Ca(2+) current (I(Ca,L)) in single rat ventricular myocytes. The anion channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and niflumic acid reversibly inhibited the Ca(2+) transients and cell shortening in a dose-dependent manner. Comparable results were observed when the majority of the extracellular Cl(-) was replaced with the relatively impermeant anions glutamate (Glt(-)) and aspartate (Asp(-)). NPPB and niflumic acid or the Cl(-) substitutes did not affect the resting intracellular Ca(2+) concentration but significantly inhibited I(Ca,L). In contrast, replacement of extracellular Cl(-) with the permeant anions NO, SCN(-), and Br(-) supported the ECC and I(Ca,L), which were still sensitive to blockade by NPPB. Exposure of cardiac ventricular myocytes to a hypotonic bath solution enhanced the amplitude of cell shortening and supported I(Ca,L), whereas hypertonic stress depressed the contraction and I(Ca,L). Moreover, cardiac contraction was completely abolished by NPPB (50 microM) under hypotonic conditions. It is concluded that a swelling-activated anion channel may be involved in the regulation of cardiac ECC through modulating L-type Ca(2+) channel activity.  相似文献   

18.
The feasibility of determining localized Ca(2+) influx using only wide-field fluorescence images was explored by imaging (using fluo-3) single channel Ca(2+) fluorescence transients (SCCaFTs), due to Ca(2+) entry through single openings of Ca(2+)-permeable ion channels, while recording unitary channel currents. Since the image obtained with wide-field optics is an integration of both in-focus and out-of-focus light, the total fluorescence increase (DeltaF(total) or "signal mass") associated with a SCCaFT can be measured directly from the image by adding together the fluorescence increase due to Ca(2+) influx in all of the pixels. The assumptions necessary for obtaining the signal mass from confocal linescan images are not required. Two- and three-dimensional imaging was used to show that DeltaF(total) is essentially independent of the position of the channel with respect to the focal plane of the microscope. The relationship between Ca(2+) influx and DeltaF(total) was obtained using SCCaFTs from plasma membrane caffeine-activated cation channels when Ca(2+) was the only charge carrier of the inward current. This relationship was found to be linear, with the value of the slope (or converting factor) affected by the particular imaging system set-up, the experimental conditions, and the properties of the fluorescent indicator, including its binding capacity with respect to other cellular buffers. The converting factor was used to estimate the Ca(2+) current passing through caffeine-activated channels in near physiological saline and to estimate the endogenous buffer binding capacity. In addition, it allowed a more accurate estimate of the Ca(2+) current underlying Ca(2+) sparks resulting from Ca(2+) release from intracellular stores via ryanodine receptors in the same preparation.  相似文献   

19.
The TTX-sensitive Ca(2+) current [I(Ca(TTX))] observed in cardiac myocytes under Na(+)-free conditions was investigated using patch-clamp and Ca(2+)-imaging methods. Cs(+) and Ca(2+) were found to contribute to I(Ca(TTX)), but TEA(+) and N-methyl-D-glucamine (NMDG(+)) did not. HEK-293 cells transfected with cardiac Na(+) channels exhibited a current that resembled I(Ca(TTX)) in cardiac myocytes with regard to voltage dependence, inactivation kinetics, and ion selectivity, suggesting that the cardiac Na(+) channel itself gives rise to I(Ca(TTX)). Furthermore, repeated activation of I(Ca(TTX)) led to a 60% increase in intracellular Ca(2+) concentration, confirming Ca(2+) entry through this current. Ba(2+) permeation of I(Ca(TTX)), reported by others, did not occur in rat myocytes or in HEK-293 cells expressing cardiac Na(+) channels under our experimental conditions. The report of block of I(Ca(TTX)) in guinea pig heart by mibefradil (10 microM) was supported in transfected HEK-293 cells, but Na(+) current was also blocked (half-block at 0.45 microM). We conclude that I(Ca(TTX)) reflects current through cardiac Na(+) channels in Na(+)-free (or "null") conditions. We suggest that the current be renamed I(Na(null)) to more accurately reflect the molecular identity of the channel and the conditions needed for its activation. The relationship between I(Na(null)) and Ca(2+) flux through slip-mode conductance of cardiac Na(+) channels is discussed in the context of ion channel biophysics and "permeation plasticity."  相似文献   

20.
The action of the blood clotting enzyme thrombin on single channel and whole cell Ca(2+)-currents was studied in isolated mammalian cardiac myocytes. Thrombin, at a concentration of 10(-8) mol/l, increased the Ca(2+)-channel activity in cell-attached patches. The mean open probability of the channel was enhanced, while the number of sweeps without openings, which reflects the availability of the channel, was significantly reduced. Neither the single channel conductance nor the activation curve were affected by thrombin. Thrombin was added to the bath solution, and its effect is therefore indirect and probably mediated via a second messenger. However, thrombin did not affect whole-cell Ca(2+)-currents, whereas a beta-adrenergic stimulation in the same cell increased the Ca(2+)-current. It is concluded that thrombin affects an intracellular mechanism for Ca2+ channel current regulation, which is still unknown and which is rapidly lost during conventional whole-cell Ca2+ current measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号