首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arrays of microelectrodes for AC electrokinetic experiments were fabricated by weaving together stainless steel wires (weft) and flexible polyester yarn (warp) in a plain weave pattern. The cloth produced can be used to collect cells in low conductivity media by dielectrophoresis (DEP). The construction of model biofilms consisting of a yeast layer on top of a layer of M. luteus is demonstrated, using polyethylenimine (PEI) as the flocculating agent. This technique offers an alternative to the formation of biofilms at microelectrodes made by photolithography, and would allow the construction of biofilms with defined internal architectures by DEP at much larger scales than was possible previously. Furthermore, the flexibility of the cloth would also allow it to be distorted or folded into various shapes.  相似文献   

2.
The amplitude-frequency dependence of the polarizability of erythrocytes, yeast cells, and latex particles in the range of 1–106 Hz was studied by the method of dielectrophoresis (DEP). Positive DEP of erythrocytes and yeast cells in a frequency range of 60–100 Hz was revealed. The positive DEP of cells in the given range is theoretically explained by appearance of a great number of transverse pores through the membrane and wall of the cell.  相似文献   

3.
The handling of individual cells, which has attracted increasing attention, is a key technique in cell engineering such as gene introduction, drug injection, and cloning technology. Alternating current (AC) electrokinetics has shown great potential for microfluidic functions such as pumping, mixing, and concentrating particles. The non-uniform electric field gives rise to Joule heating and dielectrophoresis (DEP). The motion of particles suspended in the medium can be influenced directly, by means of dielectrophoretic effects, and indirectly, via fluid flow through a viscous drag force that affects the particles. Thus alternating current electrothermal effect (ACET) induced flow and DEP force can be combined to manipulate and trap single particles and cells. This study presents a microfluidic device which is capable of specifically guiding and capturing single particles and cells by ACET fluid flow and the negative dielectrophoretic (nDEP) trap, respectively. The experiment was operated at high frequencies (5–12 MHz) and in a culture medium whose high conductivity (σ = 1.25 S/m) is of interest to biochemical analysis and environmental monitoring, which are both prone to producing ACET and nDEP. Manipulation of particle motion using ACET-induced fluid flow to the target trap is modeled numerically and is in good agreement with the experimental results.  相似文献   

4.
Selective separation of cells using dielectrophoresis (DEP) has recently been studied and methods have been proposed. However, these methods are not applicable to large‐scale separation because they cannot be performed efficiently. In DEP separation, the DEP force is effective only when it is applied close to the electrodes. Utilizing a DEP filter is a solution for large‐scale separation. In this article, the separation efficiency for viable and nonviable cells in a DEP filter was examined. The effects of an applied AC electric field frequency and the gradient of the squared electric field intensity on a DEP velocity for the viable and nonviable animal cells (3‐2H3 cell) were discussed. The frequency response of the DEP velocity differed between the viable and the nonviable cells. We deducted an empirical equation that can be used as guiding principle for the DEP separation. The results indicate that the viable and the nonviable cells were separated using the DEP filter, and the best operating conditions such as the applied voltage and the flow rate were discussed. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
In this paper we have utilized the principle of dielectrophoresis (DEP) to develop an apparatus to stably levitate single biological cells using a digital feedback control scheme. Using this apparatus, the positive DEP spectra of both Canola plant protoplast and ligament fibroblast cells have been measured over a wide range of frequencies (1 kHz to 50 MHz) and suspending medium conductivities (11-800 muS/cm). The experimental data thus obtained have been interpreted in terms of a simple spherical cell model. Furthermore, utilizing such a model, we have shown that various cellular parameters of interest can be readily obtained from the measured DEP levitation spectrum. Specifically, the effective membrane capacitance of single cells has been determined. Values of 0.47 +/- 0.03 muF/cm2 for Canola protoplasts and 1.52 +/- 0.26 muF/cm2 for ligament fibroblasts thus obtained are consistent with those determined by other existing electrical methods.  相似文献   

6.
A functionalized microwire sensor based on dielectrophoresis (DEP) and antigen-antibody reaction was initially developed for sensitive and selective detection of E. coli O157:H7. The dynamics of gold-tungsten microwires were manipulated using an automated X-Y-Z stage and the sensing process included antibody immobilization and bacterial detection, and cell quantification. Antibodies were first immobilized on surface of the microwire to improve sensing specificity, and then coupled with DEP for capture of E. coli cells in a mixture of E. coli cells and non-conductive polystyrene beads. Afterward, fluorescein-conjugated secondary antibodies were applied to the wire for quantification of captured bacteria. Field Emission Scanning Electron Microscope (FESEM) figures and fluorescence intensities of bacteria on the wire validated the sensing mechanism. The entire immobilization and detection procedure could be completed within 30 min with simple operations. Performance of the microwire sensor was not significantly affected when conducted in orange juice. In addition, the detection limit of this sensor was about 5 bacterial cells per microwire in 1000 CFU/mL bacterial suspensions when the electric field generated at 3 MHz and 20 peak to peak voltage (V(pp)), and only targeted E. coli cells were concentrated and captured.  相似文献   

7.
A method has been developed for immobilizing viable but nongrowing Escherichia coli in highly uniform patches. The patches consist of a thin layer of bacteria in acrylate vinyl acetate covered with a thin layer of the same polymer devoid of bacteria and sealed by the edges. This method permits study of immobilized cell physiology in biocatalytic films by the assay methods used for suspended cells. Large numbers of patches of immobilized E. coli can be generated on metal or polyester sheets. Those described here are 12.7 mm in diameter; in them the cell layer is 30 microm thick and contains more than 5 x 10(8) viable cells. The method allows the cell-plus-polymer layer and the polymer sealant to be varied in thickness from 5 to 60 microm and from 7 to 80 microm, respectively. No leakage of cells was detected from 87% of the patches during 15 days of rehydration. Culturability of the immobilized cells, released by shaking the cells out of the porous polymer layer, was 80% of pre coating culturability. E. coli beta-galactosidase activity and measurements of total RNA and DNA from immobilized and suspended cells indicated that cells immobilized in the thin polymer layer have higher specific beta-galactosidase activity and a slower total RNA degradation rate than suspended cells over 15 days.  相似文献   

8.
Dielectrophoresis (DEP), the motion of a particle caused by an applied electric field gradient, can concentrate microorganisms non-destructively. In insulator-based dielectrophoresis (iDEP) insulating microstructures produce non-uniform electric fields to drive DEP in microsystems. This article describes the performance of an iDEP device in removing and concentrating bacterial cells, spores and viruses while operated with a DC applied electric field and pressure gradient. Such a device can selectively trap particles when dielectrophoresis overcomes electrokinesis or advection. The dielectrophoretic trapping behavior of labeled microorganisms in a glass-etched iDEP device was observed over a wide range of DC applied electric fields. When fields higher than a particle-specific threshold are applied, particles are reversibly trapped in the device. Experiments with Bacillus subtilis spores and the Tobacco Mosaic Virus (TMV) exhibited higher trapping thresholds than those of bacterial cells. The iDEP device was characterized in terms of concentration factor and removal efficiency. Under the experimental conditions used in this study with an initial dilution of 1 x 105 cells/ml, concentration factors of the order of 3000x and removal efficiencies approaching 100% were observed with Escherichia coli cells. These results are the first characterization of an iDEP device for the concentration and removal of microbes in water.  相似文献   

9.
During the dielectrophoresis of cells or other particles it is observed that unusual distributions of the cells appear on the floor of the test chamber. In certain narrow frequency ranges, the distributions are cord-like, with the “cords” running more or less parallel to the electrode faces, but also developing highly branched structures. It is observed that the cells within the cords form “pearl-chains” along the field lines and across the cords. Within the cords, the cells move actively in spiralized paths. This the dynamic cord-structure is considered to be due to the combined action of negative dielectrophoresis, Brownian motion, and gravity. Outside the conditions requisite for dynamic cord formation, the cells are seen to assume conformations reflective of simple negative dielectrophoresis which merely causes them to amass into regions of low field strength. The theory for the effects is presented, together with experimental evidence for the kinetic behavior of the dynamic cord effect.  相似文献   

10.
The frequency-dependent dielectrophoretic behaviour of an enveloped mammalian virus, herpes simplex virus type 1 is described. It is demonstrated that over the range 10 kHz–20 MHz, these viral particles, when suspended in an aqueous medium of conductivity 5 mS m?1, can be manipulated by both positive and negative dielectrophoresis using microfabricated electrode arrays. The observed transition from positive to negative dielectrophoresis at frequencies around 4.5 MHz is in qualitative agreement with a simple model of the virus as a conducting particle surrounded by an insulating membrane.  相似文献   

11.
The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells'' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells.  相似文献   

12.
Summary The rate of continuous alcohol fermentation by a mixture of free and immobilized yeast cells was found to be higher in a horizontal flow channel reactor than in a vertical column reactor under the same operational conditions. This higher fermentation rate in the horizontal reactor was attributed to accumulation of yeast cells in the reactor by free sedimentation and incomplete mixing in the direction of liquid flow. It was estimated that most of the ethanol in the horizontal bioreactor was produced by free cells in suspended or settled states. The relatively low ethanol production by the immobilized yeast cells on the ethanol production was considered due to higher product inhibition of fermentation rate within the support.  相似文献   

13.
We describe the primary recovery of plasmid DNA from alkaline lysis mixtures using a nutsche filter operated under pressure. Six different filter cloths constructed of polypropylene, polyester and stainless steel were tested, with pore sizes ranging from 5–160?μm. Both pore size and the material of the filter membranes employed in filtration experiments exerted considerable impact on the purity and yield of the plasmid DNA. The greatest degree of solids extrusion, shearing of chromosomal DNA and subsequent contamination of the filtrate was observed with the 160?μm polyester filter. The best compromise was obtained with a 5?μm polypropylene cloth. For an alkaline lysis mixture containing 101?g wet weight solids per litre, filtration through this cloth proceeded at an average rate of 22.5?cm?h?1. Virtually complete removal of solids (99.4%) and protein (96.8%) was achieved, with a 8.2-fold purification of plasmid DNA at the expense of a 33% loss in yield. The filtration performance of this membrane was further modified by precoating with diatomaceous earths of different permeabilities (0.07–1.2?darcies). The finest filter aid resulted in very pure plasmid DNA (65%), complete suspended solids removal and ?1), and some losses of plasmid DNA, due to adsorption on to the diatomaceous earth, were also observed (5.7%).  相似文献   

14.
The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF.  相似文献   

15.
This study aims at developing a 3D device for catching, separating, and transporting bio-particles based on dielectrophoresis (DEP). Target particles can be simultaneously caught and transported using the negative DEP method. In non-uniform electric fields, the levitation height or complex permittivity of certain particle may be different from that of another and this property can facilitate separation of particles. We have designed and constructed a 3D device consisting of two layers of electrodes separated by a channel formed by 50 μm thick photoresist. The electrodes can operate effectively with 10–15 V and 5–7 MHz to catch all particles in the channel, and can move particles after switching the electric field to 5–15 V and 500–1,000 KHz. Hence, particles experienced coupling force of two different directional twDEP forces, and tallied with our estimation to move along the coupling direction.  相似文献   

16.
Spectra of amplitudes of polarization of erythrocytes, yeast cells, and latex particles in the range of 1-10 Hz were investigated by the method of dielectrophoresis. Positive dielectrophoresis of erythrocytes and yeast cells the frequency range of 60 - 100 Hz was revealed. The theoretically positive dielectrophoresis was evidenced by the occurrence of channels across the cell membrane and bacterial cell wall.  相似文献   

17.
We successfully determine the ranges of dielectric permittivity, cytoplasm conductivity, and specific membrane capacitance of mouse hippocampal neuronal and glial cells using dielectrophoresis (DEP) crossover frequency (CF). This methodology is based on the simulation of CF directly from the governing equation of a dielectric model of mammalian cells, as well as the measurements of DEP CFs of mammalian cells in different suspension media with different conductivities, based on a simple experimental setup. Relationships between the properties of cells and DEP CF, as demonstrated by theoretical analysis, enable the simultaneous estimation of three properties by a straightforward fitting procedure based on experimentally measured CFs. We verify the effectiveness and accuracy of this approach for primary mouse hippocampal neurons and glial cells, whose dielectric properties, previously, have not been accurately determined. The estimated neuronal properties significantly narrow the value ranges available from the literature. Additionally, the estimated glial cell properties are a valuable addition to the scarce information currently available about this type of cell. This methodology is applicable to any type of cultured cell that can be subjected to both positive and negative dielectrophoresis.  相似文献   

18.
We present a dielectrophoresis (DEP)-based microfluidic chip that is capable of enhancing the sensitivity and selectivity of DNA hybridization using an AC electric field and hydrodynamic shear in a continuous through-flow. Molecular DEP was employed to rapidly trap ssDNA molecules in a flowing solution to a cusp-shaped nanocolloid assembly on a microfluidic chip with a locally amplified AC electric field gradient. The detection time can be accelerated to sub-minute periods, and the sensitivity can reach the pico-molar level due to the AC DEP-enhanced molecule concentration (at an optimal AC frequency of 900 kHz) in a small region (~100 μm(2)) instead of the broad area used in a tank reactor (~10(6) μm(2)). Continuous flow in a microchannel provides a constant and high shear rate that can shear off most non-specific target-probe binding to promote the discriminating selectivity. On-chip multi-target discrimination of Candida species can be achieved within a few minutes under optimal conditions.  相似文献   

19.
Pluripotent stem cells (PSCs) such as embryonic stem cells and induced PSCs can differentiate into all somatic cell types such as cardiomyocytes, nerve cells, and chondrocytes. However, PSCs can easily lose their pluripotency if the culture process is disturbed. Therefore, cell sorting methods for purifying PSCs with pluripotency are important for the establishment and expansion of PSCs. In this study, we focused on dielectrophoresis (DEP) to separate cells without fluorescent dyes or magnetic antibodies. The goal of this study was to establish a cell sorting method for the purification of PSCs based on their pluripotency using DEP and a flow control system. The dielectrophoretic properties of mouse embryonic stem cells (mESCs) with and without pluripotency were evaluated in detail, and mESCs exhibited varying frequency dependencies in the DEP response. Based on the variance in DEP properties, mixed cell suspensions of mESCs can be separated according to their pluripotency with an efficacy of approximately 90%.  相似文献   

20.
This paper is concerned with the dielectrophoretic study of human erythrocytes under cylindrical field geometry. The influence of physical variables such as the frequency and voltage of the applied electric field, conductivity of the medium in which the cells are suspended, cell concentration and exposure time of the cell to the non-uniform electric field on dielectrophoretic collection rate (DCR) is determined in a systematic manner. It is interesting to note from the DCR spectrum of human erythrocytes that the DCR is minimum at one frequency, maximum at another and there is practically no yield over a certain frequency range. This may be attributed to the variation of complex dielectric constant of the particle and medium over that frequency range. From the DCR spectrum of different groups, it is clear that DCR behaviour is different in the frequency range from 0.3–1.5 MHz, under similar conditions of temperature, conductivity and concentration of erythrocyte suspension and strength of applied AC field. The response of DCR with voltage of the applied field, concentration of cell suspension and square root of elapsed time of the cells confirms the theory of dielectrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号