首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
The cyanobacterial communities associated with stromatolites surviving in extreme habitats are a potentially rich source of bioactive secondary metabolites. We screened for the potential for production of bioactive metabolites in diverse species of cyanobacteria isolated from stromatolites in Hamelin Pool, Shark Bay, Australia. Using degenerate primer sets, putative peptide synthetase and polyketide synthase genes were detected from strains of Symploca, Leptolyngybya, Microcoleus, Pleuorocapsa, and Plectonema sp. Sequence analysis indicates the enzymes encoded by these genes may be responsible for the production of different secondary metabolites, such as hepatotoxins and antibiotics. Computer modelling was also conducted to predict the putative amino acid recognised by the unknown adenylation domain in the NRPS sequences. Mass spectral analysis also allowed the putative identification of the cyclic peptides cyanopeptolin S and 21-bromo-oscillatoxin A in two of the isolates. This is the first time evidence of secondary metabolite production has been shown in stromatolite-associated microorganisms.  相似文献   

2.
潘园园  刘钢 《遗传》2018,40(10):874-887
在目前已知的具有生物活性的微生物次级代谢物中约有50%是由丝状真菌产生的,其中包括人们所熟知的青霉素、环孢菌素A以及洛伐他汀等。鉴于丝状真菌次级代谢物在农业、医药和工业上的重要价值,它们的生物合成及其分子调控一直备受关注。丝状真菌次级代谢物的生物合成是一个复杂的过程,一般涉及多步酶学反应,该过程往往受到不同水平的调控。深入了解丝状真菌次级代谢的分子调控机制,可以为其产量的提高、新骨架化合物的发掘以及隐性次级代谢物的激活奠定重要的理论基础。本文以丝状真菌次级代谢分子调控为主线,重点介绍近40年来我国科研工作者在该领域取得的研究进展,并对这一领域未来的发展进行展望。  相似文献   

3.
Corn syrups have been evaluated in media for embryogenesis, androgenesis and the production of secondary metabolites from plant tissue culture. In the systems examined, higher productivity was obtained with media containing corn syrups than with comparable media containing glucose or sucrose. Corn syrup did not increase growth of unorganized cell cultures. Increased productivity therefore reflects a syrup-mediated promotion of cell differentiation. The effects of corn syrup on increasing yields of secondary metabolites were evident only after several passages in syrup-containing medium. This shows the importance of monitoring production over several passages to determine the effect of different carbon sources on secondary metabolite production. Superiority of the syrup is due primarily to the component sugars maltose and glucose. Mixtures of these sugars gave higher yields of secondary products than either sugar used alone.Abbreviations DP degree of polymerization  相似文献   

4.
AIMS: Penicillium ser. Corymbifera strains were assayed on a variety of media and from infected Allium cepa tissues to evaluate the stimulation and in planta prediction of low abundance metabolites. METHODS AND RESULTS: Stimulated production of corymbiferones and the corymbiferan lactones were observed for Penicillium albocoremium, Penicillium allii, Penicillium hirsutum, Penicillium hordei and Penicillium venetum strains cultured on tissue media. Target metabolites were sporadically detected from strains cultured on common laboratory media (CYA, MEA and YES). Up to a 376 times increase in corymbiferone and corymbiferan lactone production was observed when culture extracts from CYA and A. cepa agar were compared by high pressure liquid chromatography with ultraviolet and mass spectrometry (LC-UV-MS). The novel metabolite corymbiferone B was purified and structure elucidated from a P. allii/A. cepa tissue medium extract. In planta expression of low abundance, target metabolites were confirmed from infected A. cepa tissue extracts by LC-UV-MS. CONCLUSIONS: Secondary metabolite production was directly dependent and influenced by media conditions, resulting in the stimulated production of low abundance metabolites on host-derived media. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of macerated host tissue media can be applied in vitro to predict in planta expression of low abundance metabolites and aid in metabolite origin annotation during in planta metabolomic investigations at the host/pathogen interface.  相似文献   

5.
Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.  相似文献   

6.
7.
Cyanobacteria are an ancient and diverse group of photosynthetic microorganisms, which inhabit many different and extreme environments. This indicates a high degree of biological adaptation, which has enabled these organisms to thrive and compete effectively in nature. The filamentous cyanobacterium, Lyngbya majuscula, produces several promising antifungal and cytotoxic agents, including laxaphycin A and B and curacin A. Samples of L. majuscula collected from Moorea Island, Tahiti (French Polynesia) and from the Culture Collection of Algae and Protozoa (CCAP 1446/4) were studied and adapted to large scale laboratory culture (5 l). This constitutes a 100-fold scale-up for the culture of this particular strain of L. majuscula. The effect of culture vessel configurations, growth conditions and media compositions on growth of L. majuscula was examined. Using optimised culture conditions, two strains of L. majuscula are currently being evaluated for their production of secondary metabolites. Results will be compared with those obtained from four environmental extracts. Comparisons were made by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). It was shown that varying the culture conditions under which L. majuscula was grown had the greatest effect on secondary metabolite production, thus providing potential for future bioprocess intensified production.  相似文献   

8.
Modeling of microorganisms transport in a cylindrical pore   总被引:1,自引:0,他引:1  
A mathematical model accounting for key parameters as microbial propagation, metabolite formation, dispersion, microbial chemotaxis and water flooding has been proposed to simulate the transport of microorganisms and their metabolites in a cylindrical pore with oil adhered to its inside surface. The model focuses on the transport and the concentration distributions of microorganisms and their metabolites in the cylindrical pore, especially the concentrations that on the oil-water interface. Results from the present model indicate that microorganisms and their metabolites assembled on the oil-water interface during the water flooding process, and the concentration gradients of microorganisms and their metabolites from the pore center region up to the oil-water interface in radial direction of the cylindrical pore were consequently formed. Equilibrium concentrations of microorganisms and their metabolites in the cylindrical pore were obtained when water flow rate within a certain scope, and there existed a critical water flow rate at which the maximum equilibrium concentration of microorganisms on the oil-water interface was developed. Investigations carried out in this study may provide better understanding on the transport mechanism of microorganisms in porous media.  相似文献   

9.
Mycelial morphology and metabolite production   总被引:10,自引:0,他引:10  
Mycelial microorganisms are exploited extensively in the commercial production of a wide range of secondary metabolites. They can be cultured as free mycelia, as aggregated forms (pellets/flocs), or as artificially bound/entrapped cells, though problems are associated with the culture of each morphological type. Since the morphological type can strongly influence metabolite production, the methodology for inducing pellet formation, and the type of pellets produced are an important consideration for effective metabolite production.  相似文献   

10.
Secondary microbial metabolites have various functions for the producer microorganisms, which allow them to interact and survive in adverse environments. In addition to these functions, other biological activities may have clinical relevance, as diverse as antimicrobial, anticancer and hypocholesterolaemic effects. These metabolites are usually formed during the idiophase of growth and have a wide diversity in their chemical structures. Their synthesis is under the impact of the type and concentration of the culture media nutrients. Some of the molecular mechanisms that affect the synthesis of secondary metabolites in bacteria (Gram-positive and negative) and fungi are partially known. Moreover, all microorganisms have their peculiarities in the control mechanisms of carbon sources, even those belonging to the same genus. This regulatory knowledge is necessary to establish culture conditions and manipulation methods for genetic improvement and product fermentation. As the carbon source is one of the essential nutritional factors for antibiotic production, its study has been imperative both at the industrial and research levels. This review aims to draw the utmost recent advances performed to clarify the molecular mechanisms of the negative effect exerted by the carbon source on the secondary metabolite formation, emphasizing those found in Streptomyces, one of the genera most profitable antibiotic producers.  相似文献   

11.

Background  

Engineering microorganisms to improve metabolite flux requires detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. These sensors have been applied successfully in mammalian and plant cells but potentially could also be used to monitor steady-state levels of metabolites in microorganisms using fluorimetric assays. Sensors for hexose and pentose carbohydrates could help in the development of fermentative microorganisms, for example, for biofuels applications. Arabinose is one of the carbohydrates to be monitored during biofuels production from lignocellulose, while maltose is an important degradation product of starch that is relevant for starch-derived biofuels production.  相似文献   

12.
Fungi are well known for their vast diversity of secondary metabolites that include many life-saving drugs and highly toxic mycotoxins. In general, fungal cultures producing such metabolites are immune to their toxic effects. However, some are known to produce self-toxic compounds that can pose production optimization challenges if the metabolites are needed in large amounts for chemical modification. One such culture, LV-2841, was identified as the lead for one of our exploratory projects. This culture was found to be a slow grower that produced trace amounts of a known metabolite, cercosporamide, under the standard flask fermentation conditions, and extensive medium optimization studies failed to yield higher titers. Poor growth of the culture in liquid media was attributed to the self-toxicity of cercosporamide to the producing organism, and the minimum inhibitory concentration (MIC) of cercosporamide was estimated to be in the range of 8–16 μg/ml. Fermentations carried out in media containing Diaion® HP20 resin afforded significantly higher titers of the desired compound. While several examples of resin-based fermentations of soil streptomyces have been published, this approach has rarely been used for fungal fermentations. Over a 100-fold increase in the production titer of cercosporamide, a self-toxic secondary metabolite, was achieved by supplementing the production medium with a commercially available neutral adsorbent resin.  相似文献   

13.
微生物对植物源中药有效成分形成的影响   总被引:1,自引:0,他引:1  
植物体内外生长着大量微生物,它们主要从表皮侵入植物体.植物识别侵入的微生物后,会形成次生代谢产物来抵抗微生物的侵入,这些代谢产物为我们提供了丰富的药源.血竭、沉香、皮用中药、组培生产药用成分及一些栽培中药中有效成分的形成都与微生物有密切关系.微生物在中药上的应用有很多问题急待解决,深入研究微生物对中药的影响对提高中药质量具有重要作用.  相似文献   

14.
15.
Secondary metabolites are well known for their ability to impede other microorganisms. Reanalysis of a screen of natural products using the Caenorhabditis elegans-Candida albicans infection model identified twelve microbial secondary metabolites capable of conferring an increase in survival to infected nematodes. In this screen, the two compound treatments conferring the highest survival rates were members of the epipolythiodioxopiperazine (ETP) family of fungal secondary metabolites, acetylgliotoxin and a derivative of hyalodendrin. The abundance of fungal secondary metabolites indentified in this screen prompted further studies investigating the interaction between opportunistic pathogenic fungi and Aspergillus fumigatus, because of the ability of the fungus to produce a plethora of secondary metabolites, including the well studied ETP gliotoxin. We found that cell-free supernatant of A. fumigatus was able to inhibit the growth of Candida albicans through the production of a secreted product. Comparative studies between a wild-type and an A. fumigatus ΔgliP strain unable to synthesize gliotoxin demonstrate that this secondary metabolite is the major factor responsible for the inhibition. Although toxic to organisms, gliotoxin conferred an increase in survival to C. albicans-infected C. elegans in a dose dependent manner. As A. fumigatus produces gliotoxin in vivo, we propose that in addition to being a virulence factor, gliotoxin may also provide an advantage to A. fumigatus when infecting a host that harbors other opportunistic fungi.  相似文献   

16.
Marine actinomycete diversity and natural product discovery   总被引:14,自引:5,他引:9  
Microbial natural products remain an important resource for drug discovery yet the microorganisms inhabiting the worlds oceans have largely been overlooked in this regard. The recent discovery of novel secondary metabolites from taxonomically unique populations of marine actinomycetes suggests that these bacteria add an important new dimension to microbial natural product research. Continued efforts to characterize marine actinomycete diversity and how adaptations to the marine environment affect secondary metabolite production will create a better understanding of the potential utility of these bacteria as a source of useful products for biotechnology.  相似文献   

17.
Fourteen microorganisms, including fungi, yeasts, and bacteria, were screened for their ability to metabolize the xanthine drug pentoxifylline. Thirteen cultures either reduced the drug to the alcohol metabolite or oxidatively cleaved the ketonic side chain to homologous carboxylic acid metabolites. The alcohol metabolite was the predominant or sole metabolite in all organisms, with conversions ranging from 6 to 91%. Preparative-scale production of the alcohol metabolite with Rhodotorula rubra (ATCC 20129) allowed for the isolation of this product with a 40% yield. Two organisms also produced the carboxylic acid metabolites at low levels (2 to 10%). The routes of metabolism in microbial cultures are the same as those reported in mammalian systems.  相似文献   

18.
Fourteen microorganisms, including fungi, yeasts, and bacteria, were screened for their ability to metabolize the xanthine drug pentoxifylline. Thirteen cultures either reduced the drug to the alcohol metabolite or oxidatively cleaved the ketonic side chain to homologous carboxylic acid metabolites. The alcohol metabolite was the predominant or sole metabolite in all organisms, with conversions ranging from 6 to 91%. Preparative-scale production of the alcohol metabolite with Rhodotorula rubra (ATCC 20129) allowed for the isolation of this product with a 40% yield. Two organisms also produced the carboxylic acid metabolites at low levels (2 to 10%). The routes of metabolism in microbial cultures are the same as those reported in mammalian systems.  相似文献   

19.
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.  相似文献   

20.
检测不同培养基条件下,放线菌TRM10325发酵液抑制群感效应的活性,初步了解其活性稳定性,并为筛选最优发酵培养基提供实验依据。选取17种合成培养基、26种天然培养基发酵放线菌TRM10325,采用微孔板半定量法检测其对紫色素杆菌群感效应以及表皮葡萄球菌生物膜形成的抑制作用。不同配方的培养基对放线菌10325抑制群感效应活性的影响也不相同,其中Am6培养基抑制群感效应效果最佳。成分不同的培养基,明显影响微生物不同次级代谢产物的产生。同一微生物在不同培养基中发酵,其次生代谢产物的种类和含量变化很大。最终选定Am6培养基为最适发酵培养基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号