首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BldD is a central regulator of the developmental process in Streptomyces coelicolor. The 1.8 angstroms resolution structure of the DNA-binding domain of BldD (BldDN) reveals that BldDN forms a compact globular domain composed of four helices (alpha1-alpha4) containing a helix-turn-helix motif (alpha2-alpha3) resembling that of the DNA-binding domain of lambda repressor. The BldDN/DNA complex model led us to design a series of mutants, which revealed the important role of alpha3 and the 'turn' region between alpha2 and alpha3 for DNA recognition. Based on the fact that BldD occupies two operator sites of bldN and whiG and shows significant disparity in the affinity toward the two operator sites when they are disconnected, we propose a model of cooperative binding, which means that the binding of one BldD dimer to the high affinity site facilitates that of the second BldD dimer to the low affinity site. In addition, structural and mutational investigation reveals that the Tyr62Cys mutation, found in the first-identified bldD mutant, can destabilize BldD structure by disrupting the hydrophobic core.  相似文献   

3.
4.
5.
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.  相似文献   

6.
Although the structure of the molecular chaperone Hsp90 has been extensively characterized by X-ray crystallography, the nature of the interactions between Hsp90 and its client proteins remains unclear. We present results from a series of spectroscopic studies that strongly suggest that these interactions are highly dynamic in solution. Extensive NMR assignments have been made for human Hsp90 through the use of specific isotopic labeling of one- and two-domain constructs. Sites of interaction of a client protein, the p53 DNA-binding domain, were then probed both by chemical shift mapping and by saturation transfer NMR spectroscopy. Specific spectroscopic changes were small and difficult to observe, but were reproducibly measured for residues over a wide area of the Hsp90 surface in the N-terminal, middle and C-terminal domains. A somewhat greater specificity, for the area close to the interface between the N-terminal and middle domains of Hsp90, was identified in saturation transfer experiments. These results are consistent with a highly dynamic and nonspecific interaction between Hsp90 and p53 DNA-binding domain in this chaperone-client system, which results in changes in the client protein structure that are detectable by spectroscopic and other methods.  相似文献   

7.
8.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   

9.
Human heterochromatin protein HP1(Hsalpha) possesses two evolutionarily conserved regions in the N- and C-terminal halves, so-called chromo and chromo-shadow domains, and DNA-binding domain in the internal non-conserved region. Here, to examine its in vivo properties, we expressed HP1(Hsalpha) as a fusion product with green fluorescent protein in human cells. HP1(Hsalpha) was observed to form discrete dots in interphase nuclei and to localize in the centromeric region of metaphase chromosomes by fluorescence microscopy. Interestingly, this dot-forming activity was also found in the N-terminal half retaining the chromo and DNA-binding domains and in the C-terminal chromo-shadow domain. However, the chromo domain alone stained nuclei homogeneously. To correlate this dot-forming activity with self-associating activity in vitro, the chromo and chromo-shadow domain peptides were independently expressed in Escherichia coli, affinity purified, and chemically cross-linked with glutaraldehyde. In a SDS-polyacrylamide gel, the former mainly produced a dimer, while the latter produced a ladder of bands up to a tetramer. When passed through a gel filtration column in a native state, these peptides were exclusively separated as a dimer and a tetramer, respectively. These results suggested that the internal DNA-binding and C-terminal chromo-shadow domains are both involved in heterochromatin formation in vivo.  相似文献   

10.
11.
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism.  相似文献   

12.
13.
14.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

15.
The gamma-butyrolactone-type autoregulator/receptor systems in the Gram-positive bacterial genus Streptomyces regulate morphological differentiation or antibiotic production, or both. The autoregulator receptors act as DNA-binding proteins, and on binding their cognate ligands (gamma-butyrolactones) they are released from the DNA, thus serving as repressors. The crystal structure of CprB in Streptomyces coelicolor A3(2), a homologue of the A-factor-receptor protein, ArpA, in Streptomyces griseus, was determined. The overall structure of CprB shows that the gamma-butyrolactone receptors belong to the TetR family. CprB is composed of two domains, a DNA-binding domain and a regulatory domain. The regulatory domain contains a hydrophobic cavity, which probably serves as a ligand-binding pocket. On the basis of the crystal structure of CprB and on the analogy of the characteristics of ligand-TetR binding, the binding of gamma-butyrolactones to the regulatory domain of the receptors is supposed to induce the relocation of the DNA-binding domain through conformational changes of residues located between the ligand-binding site and the DNA-binding domain, which would result in the dissociation of the receptors from their target DNA.  相似文献   

16.
17.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

18.
The primary structure of bovine thymus poly(ADP-ribose) synthetase, as deduced from the nucleotide sequence of a cloned cDNA, indicated that this enzyme is composed of 1016 amino acids (aa) with an Mr of 113481. An abundance of Lys and Arg residues was in accord with the known basic nature of this protein. A comparison with reported sequences of human counterparts revealed: (1) three functional domains separated by partial proteolysis, i.e., DNA-binding (N-terminal), auto-modification (central), and NAD-binding (C-terminal) domains, have, in this order, increasing degrees of homology; (2) the DNA-binding domain is composed of two distinct regions: one, less conserved, containing zinc-binding fingers and the other, more conserved, containing helix-turn-helix motifs; (3) all Glu and Asp residues in the automodification domain are conserved; and (4) a 78-aa stretch encompassing the nucleotide-binding fold in the NAD-binding domain is completely conserved. These results are compatible with specific features of each domain, i.e., complex DNA-enzyme interactions, multiple automodification at acidic aa residues, and a stringent specificity for the substrate, NAD.  相似文献   

19.
Ohtani N  Saito N  Tomita M  Itaya M  Itoh A 《The FEBS journal》2005,272(11):2828-2837
The SCO2299 gene from Streptomyces coelicolor encodes a single peptide consisting of 497 amino acid residues. Its N-terminal region shows high amino acid sequence similarity to RNase HI, whereas its C-terminal region bears similarity to the CobC protein, which is involved in the synthesis of cobalamin. The SCO2299 gene suppressed a temperature-sensitive growth defect of an Escherichia coli RNase H-deficient strain, and the recombinant SCO2299 protein cleaved an RNA strand of RNA.DNA hybrid in vitro. The N-terminal domain of the SCO2299 protein, when overproduced independently, exhibited RNase H activity at a similar level to the full length protein. On the other hand, the C-terminal domain showed no CobC-like activity but an acid phosphatase activity. The full length protein also exhibited acid phosphatase activity at almost the same level as the C-terminal domain alone. These results indicate that RNase H and acid phosphatase activities of the full length SCO2299 protein depend on its N-terminal and C-terminal domains, respectively. The physiological functions of the SCO2299 gene and the relation between RNase H and acid phosphatase remain to be determined. However, the bifunctional enzyme examined here is a novel style in the Type 1 RNase H family. Additionally, S. coelicolor is the first example of an organism whose genome contains three active RNase H genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号