首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.  相似文献   

2.
Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.  相似文献   

3.
Apoptosis, or programmed cell death, is a complex, genetically-determined process involved in the development and maintenance of homeostasis in multicellular organisms. Dysregulation of apoptosis has been implicated in a number of diseases, including cancer and autoimmune disease. Thus, the investigation of apoptotic regulation has evoked considerable interest. Many apoptotic proteins have been shown to be post-translationally modulated, such as by protein cleavage, translocation, protein-protein interaction, and various post-translational modifications, which fall precisely within the range of proteomic analysis. Recently, contemporary proteomic technologies have achieved significant advances and have accelerated research in functional and chemical proteomics, which have been applied to the field of apoptosis research and have the potential to be a driving force for the field. This review highlights some of the major achievements in the application of proteomics in apoptosis research and discusses new directions and challenges for the near future.  相似文献   

4.
Uveal melanoma (UM) is the most frequent primary intraocular tumor in adult humans. Despite the significant advances in diagnosis and treatment of UM in the last decades, the prognosis of UM sufferers is still poor. Metastatic liver disease is the leading cause of death in UM and can develop after a long disease-free interval, suggesting the presence of occult micrometastasis. Proteomics technology has opened new opportunities for elucidating the molecular mechanism of complex diseases, such as cancer. This article will review the recent developments in biomarker discovery for UM research by proteomics. In the last few years, the first UM proteomics-based analyses have been launched, yielding promising results. An update on recent developments on this field is presented.  相似文献   

5.
Proteomics in human Parkinson's disease research   总被引:1,自引:0,他引:1  
During the last decades, considerable advances in the understanding of specific mechanisms underlying neurodegeneration in Parkinson's disease have been achieved, yet neither definite etiology nor unifying sequence of molecular events has been formally established. Current unmet needs in Parkinson's disease research include exploring new hypotheses regarding disease susceptibility, occurrence and progression, identifying reliable diagnostic, prognostic and therapeutic biomarkers, and translating basic research into appropriate disease-modifying strategies. The most popular view proposes that Parkinson's disease results from the complex interplay between genetic and environmental factors and mechanisms believed to be at work include oxidative stress, mitochondrial dysfunction, excitotoxicity, iron deposition and inflammation. More recently, a plethora of data has accumulated pinpointing an abnormal processing of the neuronal protein α-synuclein as a pivotal mechanism leading to aggregation, inclusions formation and degeneration. This protein-oriented scenario logically opens the door to the application of proteomic strategies to this field of research. We here review the current literature on proteomics applied to Parkinson's disease research, with particular emphasis on pathogenesis of sporadic Parkinson's disease in humans. We propose the view that Parkinson's disease may be an acquired or genetically-determined brain proteinopathy involving an abnormal processing of several, rather than individual neuronal proteins, and discuss some pre-analytical and analytical developments in proteomics that may help in verifying this concept.  相似文献   

6.
Uveal melanoma (UM) is the most frequent primary intraocular tumor in adult humans. Despite the significant advances in diagnosis and treatment of UM in the last decades, the prognosis of UM sufferers is still poor. Metastatic liver disease is the leading cause of death in UM and can develop after a long disease-free interval, suggesting the presence of occult micrometastasis. Proteomics technology has opened new opportunities for elucidating the molecular mechanism of complex diseases, such as cancer. This article will review the recent developments in biomarker discovery for UM research by proteomics. In the last few years, the first UM proteomics-based analyses have been launched, yielding promising results. An update on recent developments on this field is presented.  相似文献   

7.
《Journal of Proteomics》2010,73(1):10-29
During the last decades, considerable advances in the understanding of specific mechanisms underlying neurodegeneration in Parkinson's disease have been achieved, yet neither definite etiology nor unifying sequence of molecular events has been formally established. Current unmet needs in Parkinson's disease research include exploring new hypotheses regarding disease susceptibility, occurrence and progression, identifying reliable diagnostic, prognostic and therapeutic biomarkers, and translating basic research into appropriate disease-modifying strategies. The most popular view proposes that Parkinson's disease results from the complex interplay between genetic and environmental factors and mechanisms believed to be at work include oxidative stress, mitochondrial dysfunction, excitotoxicity, iron deposition and inflammation. More recently, a plethora of data has accumulated pinpointing an abnormal processing of the neuronal protein α-synuclein as a pivotal mechanism leading to aggregation, inclusions formation and degeneration. This protein-oriented scenario logically opens the door to the application of proteomic strategies to this field of research. We here review the current literature on proteomics applied to Parkinson's disease research, with particular emphasis on pathogenesis of sporadic Parkinson's disease in humans. We propose the view that Parkinson's disease may be an acquired or genetically-determined brain proteinopathy involving an abnormal processing of several, rather than individual neuronal proteins, and discuss some pre-analytical and analytical developments in proteomics that may help in verifying this concept.  相似文献   

8.
In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined. In addition to previously recognized CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, >60 phylogenetically diverse bacterial genera that are not typically associated with CF pathogenesis were also detected. A surprisingly large number of fermenting facultative and obligate anaerobes from multiple bacterial phyla was present in each sample. Many of the bacteria and sequences found were normal residents of the oropharyngeal microflora and with many containing opportunistic pathogens. Our data suggest that these undersampled organisms within the CF lung are part of a much more complex microbial ecosystem than is normally presumed. Characterization of these communities is the first step in elucidating potential roles of diverse bacteria in disease progression and to ultimately facilitate advances in CF therapy.  相似文献   

9.
The application of proteomics to respiratory diseases, such as asthma and COPD, has been limited compared to other fields, like cancer. Both asthma and COPD are recognised to be multi-factorial and complex diseases, both consisting of clusters of multiple disease phenotypes. The complexity of these diseases combined with the inaccessibility and invasiveness of disease relevant samples have provided a hurdle to the progress of respiratory proteomics. Advances in proteomic instrumentation and methodology have led to the possibility to identify proteomes in much smaller quantities of biological material. This review focuses on the efforts in respiratory proteomics in relation to asthma and COPD, and the importance of identifying subgroups of disease entities to establish appropriate biomarkers, and to enhance the understanding of underlying mechanisms in each subgroup. Careful phenotype characterisation of patient subpopulations is required to make improvement in the field of heterogeneous diseases such as asthma and COPD, and the clusters of phenotypes are likely to encompass subgroups of disease with distinct molecular mechanisms; endotypes. The utilisation of modern advanced proteomics in endotypes of asthma and COPD will likely contribute to the increased understanding of disease mechanisms, establishment of biomarkers for these endotypes and improved patient care.  相似文献   

10.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.  相似文献   

11.
Directed network motifs are the building blocks of complex networks, such as human brain networks, and capture deep connectivity information that is not contained in standard network measures. In this paper we present the first application of directed network motifs in vivo to human brain networks, utilizing recently developed directed progression networks which are built upon rates of cortical thickness changes between brain regions. This is in contrast to previous studies which have relied on simulations and in vitro analysis of non-human brains. We show that frequencies of specific directed network motifs can be used to distinguish between patients with Alzheimer’s disease (AD) and normal control (NC) subjects. Especially interesting from a clinical standpoint, these motif frequencies can also distinguish between subjects with mild cognitive impairment who remained stable over three years (MCI) and those who converted to AD (CONV). Furthermore, we find that the entropy of the distribution of directed network motifs increased from MCI to CONV to AD, implying that the distribution of pathology is more structured in MCI but becomes less so as it progresses to CONV and further to AD. Thus, directed network motifs frequencies and distributional properties provide new insights into the progression of Alzheimer’s disease as well as new imaging markers for distinguishing between normal controls, stable mild cognitive impairment, MCI converters and Alzheimer’s disease.  相似文献   

12.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry – one of the most commonly used analytical tools in proteomics – for high-throughput analyses.  相似文献   

13.
Separation and identification of human heart proteins   总被引:2,自引:0,他引:2  
Heart failure is not a uniform disease entity, but a syndrome with various causes, including hypertension, ischemia and congenital heart disease, cardiomyopathy, myocarditis and intoxication. During the recent years a number of molecular and cellular alterations have been identified in the diseased heart, but a direct causative link between these changes and functional impairment, medical responsiveness, progression of the disease and the patients' outcome remains to be established. After an accumulation of large amounts of DNA sequence data in genomic projects, scientists have now turned their attention to the central executors of all programs of life, the proteins. In complementation of the genomic initiatives, proteomics based approaches have lined up not only for large-scale identification of proteins and their post-translational modifications, but also to study the function of protein complexes, protein-protein interactions and regulatory and signalling cascades in the cellular network. In concert with genomic data functional proteomics will hold the key for a better understanding and therapeutical management of cardiovascular diseases in the future.  相似文献   

14.
Neuroblastoma (NB) is one of the most common solid tumors of childhood and displays a remarkable diversity in both biologic characteristics and clinical outcomes. Availability of high-throughput ‘omics technologies and their subsequent application towards oncology has provided insight into the complex pathways of tumor formation and progression. Investigation of NB ‘omics profiles may better define tumor behavior and provide targeted therapy with the goal of improving outcomes in patients with high-risk disease. Utilization of these technologies in NB has already led to advances in classification and risk stratification. The gradual emergence of NB-directed proteomics adds a layer of intricacy to the analysis of biologic organization but may ultimately provide a better comprehension of this complex disease. In this review, we cite specific examples of how NB-directed proteomics has provided information regarding novel biomarkers and possible therapeutic targets. We finish by examining the impact of high-throughput ‘omics in the field of NB and speculate on how these emerging technologies may further be incorporated into the discipline.  相似文献   

15.
16.
Mass spectrometry, specifically the analysis of complex peptide mixtures by liquid chromatography and tandem mass spectrometry (shotgun proteomics) has been at the centre of proteomics research for the past decade. To overcome some of the fundamental limitations of the approach, including its limited sensitivity and high degree of redundancy, new proteomic workflows are being developed. Among these, targeting methods in which specific peptides are selectively isolated, identified and quantified are particularly promising. Here we summarize recent incremental advances in shotgun proteomic methods and outline emerging targeted workflows. The development of the target-driven approaches with their ability to detect and quantify identical, non-redundant sets of proteins in multiple repeat analyses will be crucially important for the application of proteomics to biomarker discovery and validation, and to systems biology research.  相似文献   

17.
For a long time, targeted and discovery proteomics covered different corners of the detection spectrum, with targeted proteomics focused on small target sets. This changed with the recent advances in highly multiplexed analysis. While discovery proteomics still pushes higher numbers of identified and quantified proteins, the advances in targeted proteomics rose to cover large parts of less complex proteomes or proteomes with low protein detection counts due to dynamic range restrictions, like the blood proteome. These new developments will impact, especially on the field of biomarker discovery and the possibility of using targeted proteomics for diagnostic purposes.  相似文献   

18.
Xiao H  Wong DT 《Bioinformation》2010,5(7):294-296
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

19.
Human saliva is a biological fluid with enormous diagnostic potential. Because saliva can be non-invasively collected, it provides an attractive alternative for blood, serum or plasma. It has been postulated that the blood concentrations of many components are reflected in saliva. Saliva harbors a wide array of proteins, which can be informative for the detection of diseases. Profiling the proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of different stages of diseases, which may be useful in medical diagnostics. With advanced instrumentation and developed refined analytical techniques, proteomics is widely envisioned as a useful and powerful approach for salivary proteomic biomarker discovery. As proteomic technologies continue to mature, salivary proteomics have great potential for biomarker research and clinical applications. The progress and current status of salivary proteomics and its application in the biomarker discovery of oral and systematic diseases will be reviewed. The scientific and clinical challenges underlying this approach will also be discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号