首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2-Hydroxyputrescine in seven regions of single rat brains was measured with a sensitive, specific assay by gas chromatography-mass spectrometry. The regions were the cerebral cortex, cerebellum, medulla oblongata, hypothalamus, striatum, hippocampus, and midbrain. The level of 2-hydroxyputrescine was very high in the cerebral cortex and cerebellum, high in the medulla oblongata, hypothalamus, and hippocampus, and low in the striatum and midbrain. The level of 2-hydroxyputrescine in the cerebellum was significantly higher than in the striatum and midbrain.  相似文献   

2.
Distribution of galanin-like immunoreactivity in baboon brain   总被引:4,自引:0,他引:4  
Galanin-like immunoreactivity (GLI) was measured in baboon brains using a recently developed radioimmunoassay. Concentrations were measured in 10 cortical regions, hippocampus and 20 subcortical regions. The highest concentrations were in the median eminence, followed by hypothalamus, locus ceruleus, periaqueductal grey, bed nucleus of the stria terminalis, septum, amygdala and substantia innominata. Substantial amounts were also measurable in the inferior olive, basal ganglia and thalamus with very low levels in cerebellum. In cerebral cortex, concentrations were lowest in occipital cortex and highest in dorsolateral frontal cortex. Hippocampal concentrations were higher than those in cerebral cortex. Concentrations of GLI in cerebral cortex were significantly correlated with choline acetyltransferase activity and substance P immunoreactivity but not with concentrations of somatostatin or neuropeptide Y. Approximately half the GLI coeluted with porcine standards while half corresponded to a lower molecular weight species on gel permeation chromatography. With reverse phase high performance liquid chromatography (HPLC) the majority of the immunoreactivity eluted just in front of the porcine standard with a smaller amount coeluting with the porcine standard. These results show a widespread distribution of GLI in primate brain and are in accord with previous immunocytochemical studies.  相似文献   

3.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerbral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.  相似文献   

4.
Rats with increased alcohol motivation have been found to have a rise in enkephalin levels in limbic cortex and a decrease in met-enkephalin levels in the brain basal ganglia. Reduction of met-enkephalin to leu-enkephalin ratio in basal ganglia, limbic cortex and hypothalamus may serve as an index of increased inclination to ethanol in these animals. Alcohol dependence is characterized by reduced cAMP content in the majority of brain structures studied, sharply decreased met-enkephalin levels in limbic cortex and hypothalamus, and diminished cAMP and cGMP content in hypothalamus. In the third stage of experimental alcoholism the partial normalization of met-enkephalin and cAMP levels is observed in brain structures, with cGMP content increased in hypothalamus and considerably reduced in basal ganglia.  相似文献   

5.
The levels of the two isoforms of glutamate decarboxylase (GAD) were measured in 12 regions of adult rat brain and three regions of mouse brain by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting with an antiserum that recognizes the identical C-terminal sequence in both isoforms from both species. In rat brain the amount of smaller isoform, GAD65, was greater than that of the larger isoform, GAD67, in all twelve regions. GAD65 ranged from 77-89% of total GAD in frontal cortex, hippocampus, hypothalamus, midbrain, olfactory bulb, periaqueductal gray matter, substantia nigra, striatum, thalamus and the ventral tegmental area. The proportion of GAD65 was lower in amygdala and cerebellum but still greater than half of the total. There was a strong correlation between total GAD protein and GAD activity. In the three mouse brain regions analysed (cerebellum, cerebral cortex and hippocampus) the proportion of GAD65 (35,47, and 51% of total GAD) was significantly lower than in the corresponding rat-brain regions. The amount of GAD67 was greater than the amount of GAD65 in mouse cerebellum and was approximately equal to the amount of GAD65 in mouse cerebral cortex and hippocampus.  相似文献   

6.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

7.
We have previously identified three types of protein kinase C (a Ca2+-activated phospholipid-dependent kinase) isozymes, designated types I, II, and III, from rat brain (Huang, K.-P., Nakabayashi, H., and Huang, F. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8535-8539). These enzymes are different in their elution profile from hydroxylapatite column, sites of autophosphorylation, and immunoreactivity toward two types of monoclonal antibodies. Now we describe the purification of similar protein kinase C isozymes from monkey brain and their regional distribution in the brain. These primate enzymes all have the same molecular weight of 82,000, and each type of isozyme cross-reacts with the purified monospecific antibodies against its corresponding rat brain counterpart isozyme. These purified antibodies were used to quantify the relative contents of three types of protein kinase C isozymes in various regions of rat and monkey brains. In rat brain, cerebellum contained a high level of the type I isozyme; cerebral cortex, thalamus, and corpus callosum were high in the type II enzyme; and olfactory bulb was highest in the type III enzyme. In monkey brain, the type I isozyme was found to be enriched in cerebellum, hippocampus, and amygdala; the type II enzyme was at very high level in caudate, frontal and motor cerebral cortices, substantia nigra, and thalamus; and the type III enzyme was at the highest level in olfactory bulb. These results indicate that protein kinase C isozymes are differentially distributed in various regions of rat and monkey brains and suggest a unique role for each isozyme in controlling the different neuronal functions in the brain.  相似文献   

8.
免疫组织化学方法检测脑红蛋白在大鼠中枢神经系统的分布   总被引:17,自引:0,他引:17  
目的 探讨脑红蛋白(NGB)基因在中枢神经系统中的分布。方法 用免疫组织化学ABC法研究了NGB蛋白在成年大鼠脑内的分布和定位。结果 NGB蛋白在成年大鼠脑中有非常广泛的表达。其分布区域包括大脑皮质,海马,丘脑和下丘脑的部分核团,脑桥及小脑,NGB免疫反应阳性物质定位于神经元的细胞质。结论 NGB蛋白在大鼠脑中有非常广泛的表达,提示NGB基因在中枢神经系统的功能活动中可能起重要作用。  相似文献   

9.
The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.  相似文献   

10.
Ca2+-activated K+ channels of the BK-type in the mouse brain   总被引:4,自引:2,他引:2  
An antibody against the 442 carboxy-terminal amino acids of the BK channel α-subunit detects high immunoreactivity within the telencephalon in cerebral cortices, olfactory bulb, basal ganglia and hippocampus, while lower levels are found in basal forebrain regions and amygdala. Within the diencephalon, high density was found in nuclei of the ventral and dorsal thalamus and the medial habenular nucleus, and low density in the hypothalamus. The fasciculus retroflexus and its termination in the mesencephalic interpeduncular nucleus are prominently stained. Other mesencephalic expression sites are periaquaeductal gray and raphe nuclei. In the rhombencephalon, BK channels are enriched in the cerebellar cortex and in the locus coeruleus. Strong immunoreactivity is also contained in the vestibular nuclei, but not in cranial nerves and their intramedullary course of their roots. On the cellular level, BK channels show pre- and postsynaptic localizations, i.e., in somata, dendrites, axons and synaptic terminals.Ulrike Sausbier and Matthias Sausbier have contributed equally to this work  相似文献   

11.
Isatin is an endogenous indole that influences a range of processes both in vivo and in vitro. It has a distinct and discontinuous distribution in the brain, as well as in other mammalian tissues and body fluids. However, the distribution of isatin binding sites in the brain is not known. Using a real-time beta-imager we have investigated the distribution of [3H]isatin-specific binding in rat brain sections. The highest labeling was found in hypothalamic nuclei and in the cortex, hippocampus, and cerebellum. Administration of the mechanism based monoamine oxidase inhibitor, pargyline, reduced but did not abolish the specific binding of [3H]isatin in the rat brain. The distribution became cortex, cerebellum, hypothalamus > hippocampus > brain stem > thalamus approximately striatum.  相似文献   

12.
The rate at which the metabolism is stopped by means of freezing in Freon-12 (–150°C) was studied in various areas of the rat and mouse CNS, using changes in temperature and levels of glucose and lactate as parameters for this rate. The rat cerebral cortex was frozen after 0.5 min while the hypothalamus reached 0°C after more than 1.5 min. The skin on the skull was found to be the most important temperature isolator for the cortex. Substrate levels can be studied in this area only if this piece of skin is removed previously. In the mouse, the cerebral cortex was frozen after 6 s, the hypothalamus after 0.5 min. The lumbar level of the mouse spinal cord was frozen after 15 s, the cervical level only after 47 s. Liquid nitrogen alone cooled the mouse cerebral cortex at least as fast as did Freon at its melting point. A gradual decrease from dorsal to ventral was observed in the glucose level of the molecular layer of the mouse cerebellum. The existence of a freezing front, moving slowly from dorsal to ventral, and its consequences for the measured levels of biologically labile substrates, are discussed.  相似文献   

13.
Distribution of Cholecystokinin-Like Peptides in the Human Brain   总被引:3,自引:0,他引:3  
Abstract: The regional distribution of cholecystokinin-like immunoreactivity (CCK-LI) in postmortem human brain material has been investigated. CCK-LI was concentrated particularly in the forebrain (all cerebral cortical areas, amygdala, and hippocampus), with smaller amounts in the basal ganglia, hypothalamus, and periventricular grey. Lowest amounts of CCK-LI were found in the thalamus, cerebellum, and spinal cord.  相似文献   

14.
Abstract: tele -Methylimidazoleacetic acid (t-MIAA), a major brain histamine metabolite, was measured in nine rat brain regions by a gas chromatography-mass spectrometric method that also measures the precursor amine, tele -methylhistamine (t-MH). The t-MIAA concentration of cerebellum, medulla-pons, midbrain, caudate nucleus, hypothalamus, frontal cortex, hippocampus, and thalamus varied 15-fold, hypothalamus showing the highest level (2.21 nmol/g) and cerebellum the lowest (0.15 nmol/ g). The concentrations of t-MIAA and t-MH were significantly correlated in all regions except midbrain, which had relatively more t-MIAA. Probenecid did not alter whole-brain t-MIAA levels. Treatment with pargyline, an inhibitor of monoamine oxidase, lowered the t-MIAA levels in all regions.  相似文献   

15.
Starvation-induced changes in CRF concentration in major brain regions and abnormalities in the pituitary-adrenal axis were examined in rats using rat CRF radioimmunoassay. The CRF concentrations in the hypothalamus and cerebellum were significantly reduced in the completely starved rats, while those in the midbrain, thalamus and neurointermediate lobe of the pituitary were significantly increased in the semi-starved or completely starved rats. No significant changes in the CRF concentrations were found in the pons, medulla oblongata and cerebral cortex. In the completely starved rats, the serum ACTH level was significantly reduced, whereas the serum corticosterone level was markedly elevated. These observations suggest that starvation may stimulate the CRF-ACTH-corticosterone system and that not only hypothalamic CRF but also extrahypothalamic CRF may be discretely related to feeding behavior or starvation. The reduced serum ACTH level in starved rats may be ascribed to the negative feedback effect of the elevated serum corticosterone.  相似文献   

16.
大鼠脑内脑钠素mRNA分布的原位杂交   总被引:3,自引:0,他引:3  
刘兢  马咏 《生理学报》1994,46(2):135-140
本工作以特异性的放射磷标记的鼠脑钠肽基因片段为探针,利用高灵敏度的原位杂交分析方法,对大鼠脑组织切片中脑钠肽的mRNA分布进行测定。结果表明,大鼠脑中存在脑钠肽基因的表达,其中下丘脑以及丘脑的边缘部分脑肽的mRNA浓度最高,杏仁核簇中浓度较高,嗅区其次,海马回和大脑皮层中浓度较低,小脑和延髓中几乎没有基因表达。  相似文献   

17.
Regional and subcellular distributions of brain neurotensin.   总被引:9,自引:0,他引:9  
G R Uhl  S H Snyder 《Life sciences》1976,19(12):1827-1832
The regional and subcellular distribution of neurotensin were determined using a newly developed radioimmunoassay for this central nervous system tridecapeptide. Neurotensin immunoreactivity in calf brain is high in the hypothalamus and basal ganglia, unevenly distributed through the cerebral cortex, and low in cerebellar cortex and cerebral white matter. Subcellular fractionation of rat hypothalamus reveals a strong association of neurotensin immunoreactivity with synaptosomal and microsomal fractions. These data, taken along with previously described high affinity selective brain membrane receptor binding, are consistent with a neurotransmitter candidate role for neurotensin in the brain.  相似文献   

18.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

19.
We have recently shown that the rat atrium and brain contain specific high affinity receptors for the novel snake vasoconstrictor peptide sarafotoxin-b (SRTXb), and demonstrated toxin-induced phosphoinositide hydrolysis. Here we report on the characteristics of 125I-SRTXb receptors and their regional distribution in rat brain. 125I-SRTX receptors in the rat brain bind the toxin rapidly and with high affinity. The binding was not inhibited by ligands of known neurotransmitter receptor and ion channels. 125I-SRTX receptors have a distinctive regional distribution. The highest densities were observed in the cerebellum, thalamus and hypothalamus (850, 550 and 450 fmol/mg protein, respectively) and the lowest densities in the caudate and cerebral cortex (82 and 62 fmol/mg protein, respectively). Taken together our results suggest that mammalian brains contain a hitherto undetected neuroreceptor that may operate in neurotransmission with a "SRTX-like" brain peptide, similar to the SRTX homologous vasoconstrictor peptide of the mammalian endothelium endothelin.  相似文献   

20.
A human cDNA clone containing the 5' coding region of the GABAA/benzodiazepine receptor alpha subunit was used to quantify and visualize receptor mRNA in various regions of the rat brain. Using a [32P]CTP-labelled antisense RNA probe (860 bases) prepared from the alpha subunit cDNA, multiple mRNA species were detected in Northern blots using total and poly A rat brain RNA. In all brain regions, mRNAs of 4.4 and 4.8 kb were observed, and an additional mRNA of 3.0 kb was detected in the cerebellum and hippocampus. The level of GABAA/benzodiazepine receptor mRNA was highest in the cerebellum followed by the thalamus = frontal cortex = hippocampus = parietal cortex = hypothalamus much greater than pons = striatum = medulla. In situ hybridization revealed high levels of alpha subunit mRNA in cerebellar gray matter, olfactory bulb, thalamus, hippocampus/dentate gyrus, and the arcuate nucleus of the hypothalamus. These data suggest the presence of multiple GABAA/benzodiazepine receptor alpha subunit mRNAs in rat brain and demonstrate the feasibility of studying the expression of genes encoding the GABAA/benzodiazepine receptor after pharmacological and/or environmental manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号