首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(?+)/P(D2)(?+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-? resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(?+) population relative to P(D2)(?+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(?+)/P(D2)(?+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

2.
Saito K  Ishikita H 《Biophysical journal》2011,101(8):2018-2025
The primary electron donor P700 in photosystem I is composed of two chlorophylls, PA and PB. P700 forms the cationic [PA/PB]•+ state as a result of light-induced electron transfer. We obtained a PA•+/PB•+ ratio of 28:72 and a spin distribution of 22:78 for the entire PSI protein-pigment complex. By considering the influence of the protein components on the redox potential for one-electron oxidation of PA/PB monomers, we found that the following three factors significantly contributed to a large PB•+ population relative to PA•+: 1), Thr-A743 forming a H-bond with PA; 2), PA as a chlorophyll a epimer; and 3), a conserved PsaA/PsaB pair, the Arg-A750/Ser-B734 residue. In addition, 4), the methyl-ester groups of the accessory chlorophylls A−1A/A−1B significantly stabilized the cationic [PA/PB]•+ state and 5), the methyl-ester group orientations were completely different in A−1A and A−1B as seen in the crystal structure. When the methyl-ester group was rotated, the spin-density distribution over PA/PB ranged from 22:78 to 15:85.  相似文献   

3.
Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were optimized to provide the highest specific O(2) activity and the instrumental parameters for the EPR measurements of tyrosine Z (Y(Z)) reduction were adjusted to give the best signal-to-noise over spectral resolution. Analysis of the Y(Z)(*) reduction kinetics revealed that ET to the oxygen-evolving complex on the donor side of PSII in A. marina is indistinguishable from that in higher plants and other cyanobacteria. Likewise, the charge recombination kinetics between the first plastoquinone acceptor Q(A) and the donor side of PSII monitored by the chlorophyll fluorescence decay on the seconds time scale are not significantly different between A. marina and non-chlorophyll d organisms, while low-temperature optical absorption spectroscopy identified the primary electron acceptor in A. marina as pheophytin a. The results indicate that, if the PSII primary electron donor in A. marina is made up of chlorophyll d instead of chlorophyll a, then there must be very different interactions with the protein environment to account for the ET properties, which are similar to higher plants and other cyanobacteria. Nevertheless, the water oxidation mechanism in A. marina is kinetically unaltered.  相似文献   

4.
Pigment-protein complexes enriched in photosystem II (PS II) have been isolated from the chlorophyll (Chl) d containing cyanobacterium, Acaryochloris marina. A small PS II-enriched particle, we call 'crude reaction centre', contained 20 Chl d, 0.5 Chl a and 1 redox active cytochrome b-559 per 2 pheophytin a, plus the D1 and D2 proteins. A larger PS II-enriched particle, we call 'core', additionally bound the antenna complexes, CP47 and CP43, and had a higher chlorophyll per pheophytin ratio. Pheophytin a could be photoreduced in the presence of a strong reductant, indicating that it is the primary electron acceptor in photosystem II of A. marina. A substoichiometric amount of Chl a (less than one chlorophyll a per 2 pheophytin a) strongly suggests that Chl a does not have an essential role in the photochemistry of PS II in this organism. We conclude that PS II, in A. marina, utilizes Chl d and not Chl a as primary electron donor and that the primary electron acceptor is one of two molecules of pheophytin a.  相似文献   

5.
The low-temperature (77 K) phosphorescence of chlorophyll (Chl) in the reaction centres (D1D2-cyt b559-particles) and the core complexes of photosystem II isolated from higher plants was studied. Two phosphorescence spectral bands with the emission maxima at 950 and 977 nm, excitation maxima at 666 and 675-680 nm, and the lifetimes equal to 2 and 1.5 ms, respectively, were registered. The data indicate that the phosphorescence corresponds to the triplet Chl a molecules spatially separated from carotenoids. In samples treated by potassium ferricyanide and frozen under illumination by red light, the intensities of both bands were reduced, but the decrease of the short-wavelength 950-nm band was much more pronounced. This allows an assumption that the short-wavelength phosphorescence belongs to Chl a molecules, which are more accessible for ferricyanide because they are located on the surface of the chlorophyll-protein complexes, whereas the long-wavelength phosphorescence is emitted by the Chl molecules located inside the D1D2 heterodimer and therefore, is more protected by protein macromolecules.  相似文献   

6.
Sano  Yuko  Endo  Kaichiro  Tomo  Tatsuya  Noguchi  Takumi 《Photosynthesis research》2015,125(1-2):105-114
Photosynthesis Research - Acaryochloris marina is a unique cyanobacterium that contains chlorophyll (Chl) d as a major pigment. Because Chl d has smaller excitation energy than Chl a used in...  相似文献   

7.
The multiphasic fluorescence induction kinetics upon a high intensity light pulse have been measured and analyzed at a time resolution of 10 micros in intact leaves of Peperomia metallica and Chenopodium album and in chloroplasts isolated from the latter. Current theories and models on the relation between chlorophyll fluorescence yield and primary photochemistry in photosystem II (PSII) are inadequate to describe changes in the initial phase of fluorescence induction and in the dark fluorescence level F(0) caused by pre-energization of the system with single turnover excitation(s). A novel model is presented, which gives a quantitative relation between the efficiencies of primary photochemistry, energy trapping, and radical pair recombination in PSII. The model takes into account that at least two turnovers are required for stationary closure of a reaction center. An open reaction center is transferred with high efficiency into its semiclosed (-open) state. This state is characterized by Q(A) and P680 in the fully reduced state and a lifetime equal to the inverse of the rate constant of Q(A)(-) oxidation (approx. 250 micros). The fluorescence yield of the system with 100% of the centers in the semiclosed state is 50% of the maximal yield with all centers in the closed state at fluorescence level F(m). A situation with approximately 100% of the centers in the semiclosed state is reached after a single turnover excitation in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). The lifetime of this state under these conditions is approximately 10 s. Closure of a semiclosed (-open) center occurs with low efficiency in a second turnover. The low(er) efficiency is caused by the rate of P(+) reduction by the secondary donor Y(Z) being competitive with the rate of radical pair recombination in second and following turnovers. The single-turnover-induced alterations in the initial kinetics of the fluorescence concomitantly with a 15-25% increase in F(o) can be simulated with the present so called three-state model of energy trapping. The experimental data suggest evidence for an electrostatic effect of local charges in the vicinity of the reaction center affecting the rate of radical pair recombination in the reaction center.  相似文献   

8.
《BBA》2020,1861(10):148248
Far-red light (FRL) Photosystem II (PSII) isolated from Chroococcidiopsis thermalis is studied using parallel analyses of low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopies in conjunction with fluorescence measurements. This extends earlier studies (Nurnberg et al 2018 Science 360 (2018) 1210–1213). We confirm that the chlorophyll absorbing at 726 nm is the primary electron donor. At 1.8 K efficient photochemistry occurs when exciting at 726 nm and shorter wavelengths; but not at wavelengths longer than 726 nm. The 726 nm absorption peak exhibits a 21 ± 4 cm−1 electrochromic shift due to formation of the semiquinone anion, QA. Modelling indicates that no other FRL pigment is located among the 6 central reaction center chlorins: PD1, PD2 ChlD1, ChlD2, PheoD1 and PheoD2. Two of these chlorins, ChlD1 and PD2, are located at a distance and orientation relative to QA so as to account for the observed electrochromic shift. Previously, ChlD1 was taken as the most likely candidate for the primary donor based on spectroscopy, sequence analysis and mechanistic arguments. Here, a more detailed comparison of the spectroscopic data with exciton modelling of the electrochromic pattern indicates that PD2 is at least as likely as ChlD1 to be responsible for the 726 nm absorption. The correspondence in sign and magnitude of the CD observed at 726 nm with that predicted from modelling favors PD2 as the primary donor. The pros and cons of PD2 vs ChlD1 as the location of the FRL-primary donor are discussed.  相似文献   

9.
Saito K  Shen JR  Ishikita H 《Biophysical journal》2012,102(11):2634-2640
Influence of the axial ligand of PD1 chlorophyll (D1-His-198) on the Em of monomer chlorophylls PD1 and PD2, and the PD1?+/PD2?+ charge ratio was investigated by theoretical calculations using the PSII crystal structure of Thermosynechococcus vulcanus analyzed at 1.9-Å resolution. It was found that the Em(PD1)/Em(PD2) values and PD1?+/PD2?+ ratio remained unchanged upon D1-H198Q mutation. However, Em(PD1) was increased in the D1-H198A mutant, resulting in a more even distribution of the positive charge over PD1/PD2. Introduction of a water molecule as an axial ligand resulted in equal Em values and PD1?+/PD2?+ ratios between the mutant and wild-type, thus confirming the presence of the water ligand in the mutant.  相似文献   

10.
Under strong light conditions, long-lived chlorophyll triplets (3Chls) are formed, which can sensitize singlet oxygen, a species harmful to the photosynthetic apparatus of plants. Plants have developed multiple photoprotective mechanisms to quench 3Chl and scavenge singlet oxygen in order to sustain the photosynthetic activities. The lumenal loop of light-harvesting chlorophyll a/b complex of photosystem II (LHCII) plays important roles in regulating the pigment conformation and energy dissipation. In this study, site-directed mutagenesis analysis was applied to investigate triplet–triplet energy transfer and quenching of 3Chl in LHCII. We mutated the amino acid at site 123 located in this region to Gly, Pro, Gln, Thr and Tyr, respectively, and recorded fluorescence excitation spectra, triplet-minus-singlet (TmS) spectra and kinetics of carotenoid triplet decay for wild type and all the mutants. A red-shift was evident in the TmS spectra of the mutants S123T and S123P, and all of the mutants except S123Y showed a decrease in the triplet energy transfer efficiency. We propose, on the basis of the available structural information, that these phenomena are related to the involvement, due to conformational changes in the lumenal region, of a long-wavelength lutein (Lut2) involved in quenching 3Chl.  相似文献   

11.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most common complexes have Chl a/c(2) complexes at both sides of the PSI core monomer and have dimensions of about 17x24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c(2) light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c(2) proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c(2) proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

12.
13.
Photosystem II (PSII) contains two accessory chlorophylls (Chl(Z), ligated to D1-His118, and Chl(D), ligated to D2-His117), carotenoid (Car), and heme (cytochrome b(559)) cofactors that function as alternate electron donors under conditions in which the primary electron-donation pathway from the O(2)-evolving complex to P680(+) is inhibited. The photooxidation of the redox-active accessory chlorophylls and Car has been characterized by near-infrared (near-IR) absorbance, shifted-excitation Raman difference spectroscopy (SERDS), and electron paramagnetic resonance (EPR) spectroscopy over a range of cryogenic temperatures from 6 to 120 K in both Synechocystis PSII core complexes and spinach PSII membranes. The following key observations were made: (1) only one Chl(+) near-IR band is observed at 814 nm in Synechocystis PSII core complexes, which is assigned to Chl(Z)(+) based on previous spectroscopic studies of the D1-H118Q and D2-H117Q mutants [Stewart, D. H., Cua, A., Chisholm, D. A., Diner, B. A., Bocian, D. F., and Brudvig, G. W. (1998) Biochemistry 37, 10040-10046]; (2) two Chl(+) near-IR bands are observed at 817 and 850 nm in spinach PSII membranes which are formed with variable relative yields depending on the illumination temperature and are assigned to Chl(Z)(+), and Chl(D)(+), respectively; (3) the Chl and Car cation radicals have significantly different stabilities at reduced temperatures with Car(+) decaying much faster; (4) in Synechocystis PSII core complexes, Car(+) decays by recombination with Q(A)(-) and not by Chl(Z)/Chl(D) oxidation, with multiphasic kinetics that are attributed to an ensemble of protein conformers that are trapped as the protein is frozen; and (5) in spinach PSII membranes, Car(+) decays mainly by recombination with Q(A)(-), but also partly by formation of the 850 nm Chl cation radical. The greater stability of Chl(Z)(+) at low temperatures enabled us to confirm that resonance Raman bands previously assigned to Chl(Z)(+) are correctly assigned. In addition, the formation and decay of these cations provide insight into the alternate electron-donation pathways to P680(+).  相似文献   

14.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c2 proteins were found. The most common complexes have Chl a/c2 complexes at both sides of the PSI core monomer and have dimensions of about 17 × 24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c2 light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c2 proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c2 proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

15.
Photosystem (PS) II membranes, obtained by the method of Berthold et al. (Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett. 134, 231-234), have been fractionated by a sucrose gradient ultracentrifugation method which allows the quantitative separation of the three major chlorophyll binding complexes in these membranes: the chlorophyll (chl) a binding PSII reaction center core, the major light-harvesting complex II, and the minor chl a/b proteins called CP26, CP29, and CP24. Each fraction has been analyzed for its subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results show that 12 mol of light-harvesting complex II and 1.5 mol of each of the minor chl a/b proteins are present per mol of the PSII reaction center complex in PSII membranes. These data suggest a dimeric organization of PSII, in agreement with a recent crystallographic study (Bassi, R., Ghiretti Magaldi, A., Tognon, G., Giacometti, G. M., and Miller, K. (1989) Eur. J. Cell Biol. 50, 84-93) and imply that such a dimeric complex is served by antenna chl a/b proteins whose minimal aggregation state includes three polypeptides. This was confirmed by covalent cross-linking of purified antenna complexes.  相似文献   

16.
A collection of 17 monoclonal antibodies elicited against the light-harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC-II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b.  相似文献   

17.
The infrared spectra of photosystem II (PS II) enriched submembrane fractions isolated from spinach are obtained in water and in heavy water suspension Other spectra are obtained after a photooxidation reaction was performed on PS II to bleach the pigments. The water bands are removed by computer subtraction and the amide bands (A, B, I, II, and III) of the protein are identified. Computer enhancement techniques are used to narrow the bandwidth of the bands that the weak chlorophyll bands, buried in the much stronger protein bands, can be observed. Comparing the spectra of native and photooxidized PS II pr in water and in heavy water, we determine that three polypeptide domains are present in the native material. The first domain, which contains 22% of th is situated in the peripheral region of the PS II system. The polypeptides in this region are unfolded and devoid of chlorophyll. The second domain con of the polypeptides, is more organized, and contains the chlorophylls. The third domain has an alpha-helix configuration, does not contain chlorophyll, a affected by the photooxidation reaction or by the proton/deuteron exchange. Three different types of chlorophyll organisation are identified: two have carbonyl groups non-bonded, differing from one another only in their hydrophobic milieux; the third is weakly bonded to another unidentified group. Other forms of chlorophyll organisation are present but could not be observed because their absorption is buried in the protein amide I band.  相似文献   

18.
Takahashi R  Hasegawa K  Noguchi T 《Biochemistry》2008,47(24):6289-6291
The effect of charge distribution over a chlorophyll dimer on the redox potential of P680 in photosystem II was studied by density functional theory calculations using the P680 coordinates in the X-ray structure. From the calculated ionization potentials of the dimer and the monomeric constituents, the decrease in the redox potential by charge delocalization over the dimer was estimated to be approximately 140 mV. Such charge delocalization was previously observed in the isolated D1-D2-Cyt b 559 complexes, whereas the charge was primarily localized on P D1 in the core complexes. The calculated potential decrease of approximately 140 mV can explain the inhibition of Y Z oxidation in the former complexes and in turn implies that the charge localization on P D1 upon formation of the core complex increases the P680 potential to the level necessary for water oxidation.  相似文献   

19.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

20.
Fluorescence emission spectra excited at 514 and 633 nm were measured at -196 degrees C on dark-grown bean leaves which had been partially greened by a repetitive series of brief xenon flashes. Excitation at 514 nm resulted in a greater relative enrichment of the 730 nm emission band of Photosystem I than was obtained with 633 nm excitation. The difference spectrum between the 514 nm excited fluorescence and the 633 nm excited fluorescence was taken to be representative of a pure Photosystem I emission spectrum at -196 degrees C. It was estimated from an extrapolation of low temperature emission spectra taken from a series of flashed leaves of different chlorophyll content that the emission from Photosystem II at 730 nm was 12% of the peak emission at 694 nm. Using this estimate, the pure Photosystem I emission spectrum was subtracted from the measured emission spectrum of a flashed leaf to give an emission spectrum representative of pure Photosystem II fluorescence at -196 degrees C. Emission spectra were also measured on flashed leaves which had been illuminated for several hours in continuous light. Appreciable amounts of the light-harvesting chlorophyll a/b protein, which has a low temperature fluorescence emission maximum at 682 nm, accumulate during greening in continuous light. The emission spectra of Photosystem I and Photosystem II were subtracted from the measured emission spectrum of such a leaf to obtain the emission spectrum of the light-harvesting chlorophyll a/b protein at -196 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号