首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome cbb3-type oxidases are members of the heme copper oxidase superfamily and are composed of four subunits. CcoN contains the heme b-CuB binuclear center where oxygen is reduced, while CcoP and CcoO are membrane-bound c-type cytochromes thought to channel electrons from the donor cytochrome into the binuclear center. Like many other bacterial members of this superfamily, the cytochrome cbb3-type oxidase contains a fourth, non-cofactor-containing subunit, which is termed CcoQ. In the present study, we analyzed the role of CcoQ on the stability and activity of Rhodobacter capsulatus cbb3-type oxidase. Our data showed that CcoQ is a single-spanning membrane protein with a Nout-Cin topology. In the absence of CcoQ, cbb3-type oxidase activity is significantly reduced, irrespective of the growth conditions. Blue native polyacrylamide gel electrophoresis analyses revealed that the lack of CcoQ specifically impaired the stable recruitment of CcoP into the cbb3-type oxidase complex. This suggested a specific CcoQ-CcoP interaction, which was confirmed by chemical cross-linking. Collectively, our data demonstrated that in R. capsulatus CcoQ was required for optimal cbb3-type oxidase activity because it stabilized the interaction of CcoP with the CcoNO core complex, leading subsequently to the formation of the active 230-kDa cbb3-type oxidase complex.  相似文献   

2.
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa3-type CcO containing a di-copper CuA center and mono-copper CuB, plus a cbb3-type CcO that contains CuB but lacks CuA. Three copper chaperones are located in the periplasm of R. sphaeroides, PCuAC, PrrC (Sco) and Cox11. Cox11 is required to assemble CuB of the aa3-type but not the cbb3-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in CuA assembly in mitochondria and bacteria, and with CuB assembly of the cbb3-type CcO. PCuAC is present in many bacteria, but not mitochondria. PCuAC of Thermus thermophilus metallates a CuA center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa3- and cbb3-type CcOs of R. sphaeroides has been examined in strains lacking PCuAC, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu2 +. The absence of PrrC has a greater effect than the absence of PCuAC and PCuAC appears to function upstream of PrrC. Analysis of purified aa3-type CcO shows that PrrC has a greater effect on the assembly of its CuA than does PCuAC, and both chaperones have a lesser but significant effect on the assembly of its CuB even though Cox11 is present. Scenarios for the cellular roles of PCuAC and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to CuA of the aa3-type CcO and to CuB of the cbb3-type CcO, while the predominant role of PCuAC may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

3.
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

4.
《BBA》2023,1864(2):148934
The catalytic cycle of cytochrome c oxidase (COX) couples the reduction of oxygen to the translocation of protons across the inner mitochondrial membrane and involves several intermediate states of the heme a3-CuB binuclear center with distinct absorbance properties. The absorbance maximum close to 605 nm observed during respiration is commonly assigned to the fully reduced species of hemes a or a3 (R). However, by analyzing the absorbance of isolated enzyme and mitochondria in the Soret (420–450 nm), alpha (560–630 nm) and red (630–700 nm) spectral regions, we demonstrate that the Peroxy (P) and Ferryl (F) intermediates of the binuclear center are observed during respiration, while the R form is only detectable under nearly anoxic conditions in which electrons also accumulate in the higher extinction coefficient low spin a heme. This implies that a large fraction of COX (>50 %) is active, in contrast with assumptions that assign spectral changes only to R and/or reduced heme a. The concentration dependence of the COX chromophores and reduced c-type cytochromes on the transmembrane potential (ΔΨm) was determined in isolated mitochondria during substrate or apyrase titration to hydrolyze ATP. The cytochrome c-type redox levels indicated that soluble cytochrome c is out of equilibrium with respect to both Complex III and COX. Thermodynamic analyses confirmed that reactions involving the chromophores we assign as the P and F species of COX are ΔΨm-dependent, out of equilibrium, and therefore much slower than the ΔΨm-insensitive oxidation of the R intermediate, which is undetectable due to rapid oxygen binding.  相似文献   

5.
Aerobic phototrophic bacterium Roseobacter denitrificans has a nitric oxide reductase (NOR) homologue with cytochrome c oxidase (CcO) activity. It is composed of two subunits that are homologous with NorC and NorB, and contains heme c, heme b, and copper in a 1:2:1 stoichiometry. This enzyme has virtually no NOR activity. Electron paramagnetic resonance (EPR) spectra of the air-oxidized enzyme showed signals of two low-spin hemes at 15 K. The high-spin heme species having relatively low signal intensity indicated that major part of heme b3 is EPR-silent due to an antiferromagnetic coupling to an adjacent CuB forming a Fe-Cu binuclear center. Resonance Raman (RR) spectrum of the oxidized enzyme suggested that heme b3 is six-coordinate high-spin species and the other hemes are six-coordinate low-spin species. The RR spectrum of the reduced enzyme showed that all the ferrous hemes are six-coordinate low-spin species. ν(Fe-CO) and ν(C-O) stretching modes were observed at 523 and 1969 cm−1, respectively, for CO-bound enzyme. In spite of the similarity to NOR in the primary structure, the frequency of ν(Fe-CO) mode is close to those of aa3- and bo3-type oxidases rather than that of NOR.  相似文献   

6.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

7.
8.
Cytochrome cbb3 is the most distant member of the heme-copper oxidase family still retaining the following major feature typical of these enzymes: reduction of molecular oxygen to water coupled to proton translocation across the membrane. The thermodynamic properties of the six redox centers, five hemes and a copper ion, in cytochrome cbb3 from Rhodobacter sphaeroides were studied using optical and EPR spectroscopy. The low spin heme b in the catalytic subunit was shown to have the highest midpoint redox potential (Em,7 +418 mV), whereas the three hemes c in the two other subunits titrated with apparent midpoint redox potentials of +351, +320, and +234 mV. The active site high spin heme b3 has a very low potential (Em,7 -59 mV) as opposed to the copper center (CuB), which has a high potential (Em,7 +330 mV). The EPR spectrum of the ferric heme b3 has rhombic symmetry. To explain the origins of the rhombicity, the Glu-383 residue located on the proximal side of heme b3 was mutated to aspartate and to glutamine. The latter mutation caused a 10 nm blue shift in the optical reduced minus oxidized heme b3 spectrum, and a dramatic change of the EPR signal toward more axial symmetry, whereas mutation to aspartate had far less severe consequences. These results strongly suggest that Glu-383 is involved in hydrogen bonding to the proximal His-405 ligand of heme b3, a unique interaction among heme-copper oxidases.The heme-copper oxidases form a family of enzymes that have structural homology of the catalytic subunit in common (1). This family of proteins, characterized by six conserved histidine ligands of the redox cofactors, ranges from classical, mitochondrial terminal oxidases to nitric-oxide reductases, and the members have been classified according to evolutionary relationships of their sequences (24). The bacterial cbb3-type cytochrome c oxidases form a distinct, divergent subfamily within the heme-copper oxidases (5). Terminal oxidases share the catalytic activity of four-electron reduction of molecular oxygen to water coupled to translocation of protons across the membrane (6, 7). Cytochrome cbb3, expressed in some bacteria as a sole terminal oxidase, is characterized by its ability to maintain catalytic activity under low oxygen tension (8), and it has also been shown to have the capacity to translocate protons (9).The Rhodobacter sphaeroides cytochrome cbb3 is encoded by the ccoNOQP operon composed of four genes (10). The catalytic subunit CcoN homes a binuclear active site composed of a high spin heme b3 and a nearby copper ion (CuB). There are altogether four low spin hemes in the enzyme. In addition to a protoheme (heme b) residing in the vicinity of the active site in subunit CcoN, there are three hemes c present in the soluble domains of the two other transmembrane subunits, a monoheme subunit CcoO and a diheme subunit CcoP (11). There is yet one more membrane-spanning subunit, CcoQ, without bound cofactors (12). Although the catalytic subunit shows homology to the other heme-copper oxidases (13), the other three subunits bear no resemblance to subunits of other types of terminal oxidases. However, subunit CcoO has been shown to have sequence homology with the nitric-oxide reductase subunit NorC (14).The crystal structures of a few heme-copper oxidases have been resolved (1519), but only structural homology models are currently available for cytochromes cbb3 (2023). Apart from the signatures common to all heme-copper oxidases, the sequence alignments have revealed only very few other conserved residues when terminal oxidases are compared. Even though some amino acids, absent from cytochrome cbb3, have been shown to be of critical importance to the function of the classical heme-copper oxidases, the major functions still remain the same in all of these enzymes.The thermodynamic properties of the cbb3-type oxidases have been investigated sparsely. Apart from work yielding partial information about the properties of the hemes (11, 24, 25), two more complete studies have been carried out (5, 26). All the hemes in cytochrome cbb3 were proposed to have high redox potentials, both in the Pseudomonas stutzeri and Bradyrhizobium japonicum enzymes (5, 26). This is also the case in all other studies, except for the enzyme from Rhodothermus marinus, where two low potential redox centers were reported (25). However, little is known about the copper center in the active site (CuB). Early Fourier transform infrared (FTIR)2 spectroscopic measurements identified the presence of a heme/copper binuclear center in R. sphaeroides cytochrome cbb3 (11), and more recent resonance Raman and FTIR studies have given additional information about the structure of the active site (2729).In the absence of deconvoluted spectral components and thereby clear assignments of the redox centers in the cbb3-type oxidases, and the lack of consensus about their thermodynamic properties, a complete study was required. In this work we have set out to investigate the thermodynamic properties of all the redox centers in cytochrome cbb3 from R. sphaeroides using a combination of optical and EPR redox titrations with the main focus on the details of the catalytic site. This effort will form a basis for further mechanistic studies.  相似文献   

9.
Krithika Ganesan  Robert B. Gennis 《BBA》2010,1797(6-7):619-624
The K-pathway is one of the two proton-input channels required for function of cytochrome c oxidase. In the Rhodobacter sphaeroides cytochrome c oxidase, the K-channel starts at Glu101 in subunit II, which is at the surface of the protein exposed to the cytoplasm, and runs to Tyr288 at the heme a3/CuB active site. Mutations of conserved, polar residues within the K-channel block or inhibit steady state oxidase activity. A large body of research has demonstrated that the K-channel is required to fully reduce the heme/Cu binuclear center, prior to the reaction with O2, presumably by providing protons to stabilize the reduced metals (ferrous heme a3 and cuprous CuB). However, there are conflicting reports which raise questions about whether blocking the K-channel blocks both electrons or only one electron from reaching the heme/Cu center. In the current work, the rate and extent of the anaerobic reduction of the heme/Cu center were monitored by optical and EPR spectroscopies, comparing the wild type and mutants that block the K-channel. The new data show that when the K-channel is blocked, one electron will still readily enter the binuclear center. The one-electron reduction of the resting oxidized (“O”) heme/Cu center of the K362M mutant, results in a partially reduced binuclear center in which the electron is distributed about evenly between heme a3 and CuB in the R. sphaeroides oxidase. Complete reduction of the heme/Cu center requires the uptake of two protons which must be delivered through the K-channel.  相似文献   

10.
Copper (Cu) is an essential micronutrient that functions as a cofactor in several important enzymes, such as respiratory heme‐copper oxygen reductases. Yet, Cu is also toxic and therefore cells engage a highly coordinated Cu uptake and delivery system to prevent the accumulation of toxic Cu concentrations. In this study, we analyzed Cu delivery to the cbb3‐type cytochrome c oxidase (cbb3‐Cox) of Rhodobacter capsulatus. We identified the PCuAC‐like periplasmic chaperone PccA and analyzed its contribution to cbb3‐Cox assembly. Our data demonstrate that PccA is a Cu‐binding protein with a preference for Cu(I), which is required for efficient cbb3‐Cox assembly, in particular, at low Cu concentrations. By using in vivo and in vitro cross‐linking, we show that PccA forms a complex with the Sco1‐homologue SenC. This complex is stabilized in the absence of the cbb3‐Cox‐specific assembly factors CcoGHIS. In cells lacking SenC, the cytoplasmic Cu content is significantly increased, but the simultaneous absence of PccA prevents this Cu accumulation. These data demonstrate that the interplay between PccA and SenC not only is required for Cu delivery during cbb3‐Cox assembly but also regulates Cu homeostasis in R. capsulatus.  相似文献   

11.
The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed.  相似文献   

12.
Kinetic studies of the electron transfer processes performed by cytochrome oxidase have assigned rates of electron transfer between the metal centers involved in the oxidation of ferrocytochromec by molecular oxygen. Transient-state studies of the reaction with oxygen have led to the proposal of a sequence of carriers from cytochromec, to CuA, to cytochromea, and then to the binuclear (i.e., cytochromea 3-CuB) center. Electron exchange rates between these centers agree with relative center-to-center distances as follows; cytochromec to CuA 5–7 Å, cytochromec to cytochromea 20–25 Å, CuA to cytochromea 14–16 Å and cytochromea to cytochrome a3-CuB 8–10 Å. It is proposed that the step from cytochromea to the binuclear center is the key control point in the reaction and that this step is one of the major points of energy transduction in the reaction cycle.  相似文献   

13.
Nitric oxide reductase (NOR) is a key enzyme in denitrification, reforming the N–N bond (making N2O from two NO molecules) in the nitrogen cycle. It is a cytochrome bc complex which has apparently only two subunits, NorB and NorC. It contains two low-spin cytochromes (c and b), and a high-spin cytochrome b which forms a binuclear center with a non-heme iron. NorC contains the c-type heme and NorB can be predicted to bind the other metal centers. NorB is homologous to the major subunit of the heme/copper cytochrome oxidases, and NOR thus belongs to the superfamily, although it has an Fe/Fe active site rather than an Fe/Cu binuclear center and a different catalytic activity. Current evidence suggests that NOR is not a proton pump, and that the protons consumed in NO reduction are not taken from the cytoplasmic side of the membrane. Therefore, the comparison between structural and functional properties of NOR and cytochrome c- and quinol-oxidizing enzymes which function as proton pumps may help us to understand the mechanism of the latter. This review is a brief summary of the current knowledge on molecular biology, structure, and bioenergetics of NOR as a member of the oxidase superfamily.  相似文献   

14.
The facultative phototrophic bacterium Rhodobacter capsulatus contains only one form of cytochrome (cyt) c oxidase, which has recently been identified as a cbb3-type cyt c oxidase. This is unlike other related species, such as Rhodobacter sphaeroides and Paracoccus denitrificans, which contain an additional mitochondrial-like aa3-type cyt c oxidase. An extensive search for mutants affected in cyt c oxidase activity in R. capsulatus led to the isolation of at least five classes of mutants. Plasmids complementing them to a wild-type phenotype were obtained for all but one of these classes from a chromosomal DNA library. The first class of mutants contained mutations within the structural genes (ccoNOQP) of the cyt cbb3 oxidase. Sequence analysis of these mutants and of the plasmids complementing them revealed that ccoNOQP in R. capsulatus is not flanked by the oxygen response regulator fnr, which is located upstream of these genes in other species. Genetic and biochemical characterizations of mutants belonging to this group indicated that the subunits CcoN, CcoO, and CcoP are required for the presence of an active cyt cbb3 oxidase, and unlike in Bradyrhizobium japonicum, no active CcoN-CcoO subcomplex was found in R. capsulatus. In addition, mutagenesis experiments indicated that the highly conserved open reading frame 277 located adjacent to ccoNOQP is required neither for cyt cbb3 oxidase activity or assembly nor for respiratory or photosynthetic energy transduction in R. capsulatus. The remaining cyt c oxidase-minus mutants mapped outside of ccoNOQP and formed four additional groups. In one of these groups, a fully assembled but inactive cyt cbb3 oxidase was found, while another group had only extremely small amounts of it. The next group was characterized by a pleiotropic effect on all membrane-bound c-type cytochromes, and the remaining mutants not complemented by the plasmids complementing the first four groups formed at least one additional group affecting the biogenesis of the cyt cbb3 oxidase of R. capsulatus.The gram-negative facultative photosynthetic bacterium Rhodobacter capsulatus has a highly branched electron transport chain, resulting in its ability to grow under a wide variety of conditions (52). Its light-driven photosynthetic electron transfer pathway is a cyclic process between the photochemical reaction center and the ubihydroquinone cytochrome (cyt) c oxidoreductase (cyt bc1 complex) (30). On the other hand, the respiratory electron transfer pathways of R. capsulatus are branched after the quinone pool and contain two different terminal oxidases, previously called cyt b410 (cyt c oxidase) and cyt b260 (quinol oxidase) (3, 27, 29, 53). The branch involving cyt c oxidase is similar to the mitochondrial electron transfer chain in that it depends on the cyt bc1 complex and a c-type cyt acting as an electron carrier. The quinol oxidase branch circumvents the cyt bc1 complex and the cyt c oxidase by taking electrons directly from the quinone pool to reduce O2 to H2O. The pronounced metabolic versatility, including the ability to grow under dark, anaerobic conditions (50, 52), makes these purple non-sulfur bacteria excellent model organisms for studying microbial energy transduction.Marrs and Gest (29) have reported the first R. capsulatus mutants which were defective in the respiratory electron transport chain. Of these mutants, M5 was incapable of catalyzing the α-naphthol plus N′,N′-dimethyl-p-phenylenediamine (DMPD) plus O2→indophenol blue plus H2O reaction (NADI reaction) and unable to grow by respiration (Res), and hence was deficient in both terminal oxidases. Another mutant, M4, was also NADI but Res+ due to the presence of an active quinol oxidase. Marrs and Gest have also described two different spontaneous revertants of M5, called M6 and M7, which regained the ability to grow by respiration (29). M6 regained cyt c oxidase activity and became concurrently NADI+ and sensitive to low concentrations of cyanide and the cyt bc1 inhibitor myxothiazol, but remained quinol oxidase. On the other hand, M7 regained the quinol oxidase activity but remained cyt c oxidase (thus, NADI and resistant to myxothiazol, a phenotype identical to that of M4). All of these mutants remained proficient for phototrophic (Ps) growth.The cyt c oxidase of R. capsulatus has been purified previously and characterized as being a novel cbb3-type cyt c oxidase without a CuA center (15). It is composed of at least a membrane-integral b-type cyt (subunit I [CcoN]) with a low-spin heme b and a high-spin heme b3-CuB binuclear center, and two membrane-anchored c-type cyts (CcoO and CcoP). It has a unique active site that possibly confers a very high affinity for its substrate oxygen (49). The structural genes of this enzyme (ccoNOQP) have been sequenced recently from R. capsulatus 37b4 (45) and aligned to the partial amino acid sequence of the purified enzyme from R. capsulatus MT1131 (15). Although a ccoN mutant of strain 37b4 was reported to lack cyt c oxidase activity (45), the observed discrepancies between the amino acid sequence and the nucleotide sequence do not entirely exclude the possible presence of two similar cb-type cyt c oxidases in this species. The presence of a similar cyt c oxidase has also been demonstrated in several other bacteria, including P. denitrificans (9), R. sphaeroides (13), and Rhizobium spp. In the latter species, the homologs of ccoNOQP have been named fixNOQP (23, 34) and are required to support respiration under oxygen-limited growth during symbiotic nitrogen fixation (36).The biogenesis of a multisubunit protein complex containing several prosthetic groups, such as cyt cbb3 oxidase, is likely to require many accessory proteins involved in various posttranslational events, including protein translocation, assembly, cofactor insertion, and maturation (46). Thus, insights into this important biological process, about which currently little is known, may be gained by searching for mutants defective in cyt c oxidase activity. In this work, we describe the isolation of such mutants and their molecular genetic characterization, including those already available, such as M4, M5, and M7G. These studies indicate that in R. capsulatus, gene products of at least five different loci are involved in the formation of an active cyt cbb3 oxidase.  相似文献   

15.
The c-type cytochromes are metalloproteins with a heme molecule covalently linked to the sulfhydryls of a CXXCH heme-binding site. In plastids, at least six assembly factors are required for heme attachment to the apo-forms of cytochrome f and cytochrome c6 in the thylakoid lumen. CCS5, controlling plastid cytochrome c assembly, was identified through insertional mutagenesis in the unicellular green alga Chlamydomonas reinhardtii. The complementing gene encodes a protein with similarity to Arabidopsis thaliana HCF164, which is a thylakoid membrane-anchored protein with a lumen-facing thioredoxin-like domain. HCF164 is required for cytochrome b6f biogenesis, but its activity and site of action in the assembly process has so far remained undeciphered. We show that CCS5 is a component of a trans-thylakoid redox pathway and operates by reducing the CXXCH heme-binding site of apocytochrome c prior to the heme ligation reaction. The proposal is based on the following findings: 1) the ccs5 mutant is rescued by exogenous thiols; 2) CCS5 interacts with apocytochrome f and c6 in a yeast two-hybrid assay; and 3) recombinant CCS5 is able to reduce a disulfide in the CXXCH heme-binding site of apocytochrome f.  相似文献   

16.
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.  相似文献   

17.
Heme–copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme–copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme–copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme–copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme–copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein–lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein–membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.  相似文献   

18.
Vivek Sharma  Ville R.I. Kaila 《BBA》2010,1797(8):1512-21475
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.  相似文献   

19.
Cu homeostasis depends on a tightly regulated network of proteins that transport or sequester Cu, preventing the accumulation of this toxic metal while sustaining Cu supply for cuproproteins. In Rhodobacter capsulatus, Cu‐detoxification and Cu delivery for cytochrome c oxidase (cbb3‐Cox) assembly depend on two distinct Cu‐exporting P1B‐type ATPases. The low‐affinity CopA is suggested to export excess Cu and the high‐affinity CcoI feeds Cu into a periplasmic Cu relay system required for cbb3‐Cox biogenesis. In most organisms, CopA‐like ATPases receive Cu for export from small Cu chaperones like CopZ. However, whether these chaperones are also involved in Cu export via CcoI‐like ATPases is unknown. Here we identified a CopZ‐like chaperone in R. capsulatus, determined its cellular concentration and its Cu binding activity. Our data demonstrate that CopZ has a strong propensity to form redox‐sensitive dimers via two conserved cysteine residues. A ΔcopZ strain, like a ΔcopA strain, is Cu‐sensitive and accumulates intracellular Cu. In the absence of CopZ, cbb3‐Cox activity is reduced, suggesting that CopZ not only supplies Cu to P1B‐type ATPases for detoxification but also for cuproprotein assembly via CcoI. This finding was further supported by the identification of a ~150 kDa CcoI‐CopZ protein complex in native R. capsulatus membranes.  相似文献   

20.
Raul Covian  Bernard L. Trumpower 《BBA》2008,1777(7-8):1044-1052
Energy transduction in the cytochrome bc1 complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c1 reduction at varying quinol/quinone ratios in the isolated yeast bc1 complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the bH heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c1 reduction indicated that the bH hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of bH heme reduction of 33%–55% depending on the quinol/quinone ratio. The extent of initial cytochrome c1 reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the bH hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the bH hemes was explained using kinetics in terms of the dimeric structure of the bc1 complex which allows electrons to equilibrate between monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号