首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dioxygen reduction mechanism in cytochrome oxidases relies on proton control of the electron transfer events that drive the process. Proton delivery and proton channels in the protein that are relevant to substrate reduction and proton pumping are considered, and the current status of this area is summarized. We propose a mechanism in which the coupling of the oxygen reduction chemistry to proton translocation (P→F transition) is related to the properties of two groups of highly conserved residues, namely, His411/G386-T389 and the heme a(3)-propionateA-D399-H403 chain.  相似文献   

2.
We report the first evidence for the formation of the "607- and 580-nm forms" in the cytochrome oxidase aa3/H2O2 reaction without the involvement of tyrosine 280. The pKa of the 607-580-nm transition is 7.5. The 607-nm form is also formed in the mixed valence cytochrome oxidase/O2 reaction in the absence of tyrosine 280. Steady-state resonance Raman characterization of the reaction products of both the wild-type and Y280H cytochrome aa3 from Paracoccus denitrificans indicate the formation of six-coordinate low spin species, and do not support, in contrast to previous reports, the formation of a porphyrin pi-cation radical. We observe three oxygen isotope-sensitive Raman bands in the oxidized wild-type aa3/H2O2 reaction at 804, 790, and 358 cm-1. The former two are assigned to the Fe(IV)[double bond]O stretching mode of the 607- and 580-nm forms, respectively. The 14 cm-1 frequency difference between the oxoferryl species is attributed to variations in the basicity of the proximal to heme a3 His-411, induced by the oxoferryl conformations of the heme a3-CuB pocket during the 607-580-nm transition. We suggest that the 804-790 cm-1 oxoferryl transition triggers distal conformational changes that are subsequently communicated to the proximal His-411 heme a3 site. The 358 cm-1 mode has been found for the first time to accumulate with the 804 cm-1 mode in the peroxide reaction. These results indicate that the mechanism of oxygen reduction must be reexamined.  相似文献   

3.
T Ogura  N Sone  K Tagawa  T Kitagawa 《Biochemistry》1984,23(12):2826-2831
Resonance Raman spectra of the aa3-type cytochrome oxidase of thermophilic bacterium PS3, which has a simpler subunit composition than the mitochondrial enzymes but very similar enzymatic properties, are investigated under various conditions and compared with those of mitochondrial enzymes. The intensities of the two marker lines of reduced cytochrome a3 at 1667 and 213 cm-1 had different dependences on the incubation temperatures and pH. With regard to the incubation temperature dependence, the intensity of the 1667-cm-1 line, the peripheral CH = O stretching mode of the a3 heme, behaved in nearly the same way as that of the oxidase activity whereas the intensity of the 213-cm-1 line, the Fe-histidine stretching mode of the a3 heme, exhibited a similar dependence to that of the proton pumping activity. The 213-cm-1 line disappeared upon binding of carbon monoxide, upon raising the pH above 9.2, or after incubating above 55 degrees C. The Raman line at 1611 cm-1, which was recently suggested to probe the proton pump activity [Babcock, G.T., & Callahan, P.M. (1983) Biochemistry 22, 2314-2319], remained unaltered after incubation at 60 degrees C for 20 min despite a reduction of proton pumping activity to one-third. This argues against the proposed mechanism. The frequencies of the Raman lines were the same for the intact membrane and the isolated enzyme in the reduced state. The Raman spectra of cytochrome oxidase isolated from bacterium, yeast, and bovine heart were different in the lower frequency region below 600 cm-1 but closely alike in the higher frequency region above 1200 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cytochrome oxidase from T. thermophilus is isolated as a noncovalent complex of cytochromes c1 and aa3 in which the four redox components of aa3 appear to be associated with a single approximately 55,000-D subunit while the heme C is associated with a approximately 33,000-D peptide (Yoshida, T., Lorence, R. M., Choc, M. G., Tarr, G. E., Findling, K. L., and Fee, J. A. (1983) J. Biol. Chem. 258, 112-123). We have examined the steady state transfer of electrons from ascorbate to oxygen by cytochrome c1aa3 as mediated by horse heart, Candida krusei, and T. thermophilus (c552) cytochromes c as well as tetramethylphenylenediamine (TMPD). These mediators exhibit simple Michaelis-Menten kinetic behavior yielding Vmax and KM values characteristic of the experimental conditions. Three classes of kinetic behavior were observed and are qualitatively discussed in terms of a reaction scheme. The data show that tetramethylphenyldiamine and cytochromes c react with the enzyme at independent sites; it is suggested that cytochrome c1 may efficiently transfer electrons to cytochrome aa3. When incorporated into phospholipid vesicles, the highly purified cytochrome c1aa3 was found to translocate one proton into the exterior medium for each molecule of cytochrome c552 oxidized. The combined results suggest that this bacterial enzyme functions in a manner generally identical with the more complex eucaryotic enzyme.  相似文献   

5.
When the carbon monoxide complex of fully reduced cytochrome c oxidase, reconstituted into liposomes, is mixed with oxygen-containing buffer, complex kinetic progress curves are observed. This pattern is seen irrespective of whether the oxidase used in reconstitution is the dimeric or monomeric (subunit III-depleted) enzyme. These findings are interpreted in the light of similar experiments on the detergent-solubilized enzyme reported by Gibson and Greenwood (Gibson, Q.H., and Greenwood, C. (1963) Biochem. J. 86, 541-554) and confirmed by ourselves. We conclude that reconstitution of monomeric (subunit III-less) enzyme yields, preferentially, vesicles containing more than one functional unit, possibly associated as dimers. This result is of significance to our understanding of the relationships between aggregation state and proton pumping capacity of cytochrome oxidase.  相似文献   

6.
Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond.  相似文献   

7.
Membranes were isolated from the cyanobacterium Anacystis nidulans by French press extrusion of lysozyme-treated cells. The membranes were solubilized with sodium dodecylsulfate and subjected to denaturing polyacrylamide gel electrophoresis. Separated polypeptides were transferred to nitrocellulose by Western blotting, and incubated with antibodies against aa3-type cytochrome oxidase of Paracoccus denitrificans; antibodies against subunits I and II, and against the holoenzyme, were used and gave pronounced complementary cross reaction with two of the Anacystis membrane polypeptides corresponding to molecular weights of approximately 55,000 and 32,000, respectively. From this we conclude that an aa3-type cytochrome oxidase is present in Anacystis nidulans as was previously suggested from spectral evidence (G.A.Peschek, Biochim.Biophys.Acta 635 (1981) 470-475), and that this enzyme is composed of at least two subunits with apparent homology to subunits I and II of the corresponding Paracoccus cytochrome oxidase.  相似文献   

8.
Nitric oxide (NO) is involved in the regulation of respiration by acting as a competitive ligand for molecular oxygen at the binuclear active site of cytochrome c oxidase. The dynamics of NO in and near this site are not well understood. We performed flash photolysis studies of NO from heme a3 in cytochrome c oxidase from Paracoccus denitrificans, using femtosecond transient absorption spectroscopy. The formation of the product state--the unliganded heme a3 ground state--occurs in a similar stepwise manner (period approximately 700 fs) as previously observed for carbon monoxide photolysis from this enzyme and interpreted in terms of ballistic ligand motions in the active site on the subpicosecond time scale [Liebl, U., Lipowski, G., Négrerie, M., Lambry, J.-C., Martin, J.-L., and Vos, M. H. (1999) Nature 401, 181-184]. A fraction (approximately 35% at very low NO concentrations) of the dissociated NO recombines with heme a3 in 200-300 ps. The presence of this recombination phase indicates that a transient bond to the second ligand-binding site, a copper atom (CuB), has a short lifetime or may not be formed. Increasing the NO concentration increases the recombination yield on the hundreds of picoseconds time scale. This effect, unprecedented for heme proteins, implies that, apart from the one NO molecule bound to heme a3, a second NO molecule can be accommodated in the active site, even at relatively low (submicromolar) concentrations. Models for NO accommodation in the active site, based on molecular dynamics energy minimizations are presented. Pathways for NO motion and their relevance for the regulation of respiration are discussed.  相似文献   

9.
Mårten Wikström 《BBA》2012,1817(4):468-475
The mechanism of dioxygen activation and reduction in cell respiration, as catalysed by cytochrome c oxidase, has a long history. The work by Otto Warburg, David Keilin and Britton Chance defined the dioxygen-binding heme iron centre, viz. das Atmungsferment, or cytochrome a3. Chance brought the field further in the mid-1970's by ingenious low-temperature studies that for the first time identified the primary enzyme-substrate (ES) Michaelis complex of cell respiration, the dioxygen adduct of heme a3, which he termed Compound A. Further work using optical, resonance Raman, EPR, and other sophisticated spectroscopic techniques, some of which with microsecond time resolution, has brought us to the situation today, where major principles of how O2 reduction occurs in respiration are well understood. Nonetheless, some questions have remained open, for example concerning the precise structures, catalytic roles, and spectroscopic properties of the breakdown products of Compound A that have been called P, F (for peroxy and ferryl), and O (oxidised). This nomenclature has been known to be inadequate for some time already, and an alternative will be suggested here. In addition, the multiple forms of P, F and O states have been confusing, a situation that we endeavour to help clarifying. The P and F states formed artificially by reacting cytochrome oxidase with hydrogen peroxide are especially scrutinised, and some novel interpretations will be given that may account for previously unexplained observations. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

10.
Following different reports on the stoichiometry and configuration of NO binding to mammalian and bacterial reduced cytochrome c oxidase aa(3) (CcO), we investigated NO binding and dynamics in the active site of beef heart CcO as a function of NO concentration, using ultrafast transient absorption and EPR spectroscopy. We find that in the physiological range only one NO molecule binds to heme a(3), and time-resolved experiments indicate that even transient binding to Cu(B) does not occur. Only at very high (approximately 2 mM) concentrations a second NO is accommodated in the active site, although in a different configuration than previously observed for CcO from Paracoccus denitrificans [E. Pilet, W. Nitschke, F. Rappaport, T. Soulimane, J.-C. Lambry, U. Liebl and M.H. Vos. Biochemistry 43 (2004) 14118-14127], where we proposed that a second NO does bind to Cu(B). In addition, in the bacterial enzyme two NO molecules can bind already at NO concentrations of approximately 1 microM. The unexpected differences highlighted in this study may relate to differences in the physiological relevance of the CcO-NO interactions in both species.  相似文献   

11.
Cytochrome c oxidase, the terminal enzyme in the electron transfer chain, catalyzes the reduction of oxygen to water in a multiple step process by utilizing four electrons from cytochrome c. To study the reaction mechanism, the resonance Raman spectra of the intermediate states were measured during single turnover of the enzyme after catalytic initiation by photolysis of CO from the fully reduced CO-bound enzyme. By measuring the change in intensity of lines associated with heme a, the electron transfer steps were determined and found to be biphasic with apparent rate constants of approximately 40 x 10(3) s(-1) and approximately 1 x 10(3) s(-1). The time dependence for the oxidation of heme a and for the measured formation and decay of the oxy, the ferryl ("F"), and the hydroxy intermediates could be simulated by a simple reaction scheme. In this scheme, the presence of the "peroxy" ("P") intermediate does not build up a sufficient population to be detected because its decay rate is too fast in buffered H(2)O at neutral pH. A comparison of the change in the spin equilibrium with the formation of the hydroxy intermediate demonstrates that this intermediate is high spin. We also confirm the presence of an oxygen isotope-sensitive line at 355 cm(-1), detectable in the spectrum from 130 to 980 micros, coincident with the presence of the F intermediate.  相似文献   

12.
13.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa(3)-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa(3)-type cytochrome c oxidase. This is the first report to indicate that aa(3)-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

14.
15.
《BBA》1985,810(2):174-183
Cytochrome c oxidase of Nitrosomonas europaea has been called cytochrome a1 by Erickson et al. (Erickson, R.H., Hooper, A.B. and Terry, K.R. (1972) Biochim. Biophys. Acta 283, 155–166) because the reduced form of their preparation had the α peak at 595 nm. In the present studies, the enzyme was purified to an electrophoretically almost homogeneous state and some of its properties were studied. The enzyme much resembled cytochrome aa3-type oxidase although its reduced form showed the α peak at 597 nm. (1) The absorption spectra of the CO compound of the reduced enzyme and CN compounds of the oxidized and reduced enzyme were similar to those of the respective compounds of cytochrome aa3, as well as the absorption spectrum of the intact enzyme resembled that of the cytochrome. (2) The enzyme possessed two molecules of haem a and 1–2 atoms of copper in the molecule. (3) The enzyme molecule was composed of two kinds of subunits of Mr 50000 and 33000, respectively, as are other bacterial cytochromes aa3. Although the enzyme resembled other bacterial cytochromes aa3 in many properties, it differed greatly in two properties; its CO compound was easily dissociated into the oxidized enzyme and CO in air, and 50% inhibition of its activity by CN required approx. 100 μM of the reagent. The enzyme oxidized 0.57, 1.6 and 1.8 mol horse, Candida krusei and N. europaea ferrocytochromes c per s per mol haem a, respectively, in 10 mM phosphate buffer, pH 6.0. The turnover numbers with eukaryotic ferrocytochromes c were increased to 32 and 14, respectively, by addition of cardiolipin (14 μ · ml−1).  相似文献   

16.
The mechanism of dioxygen activation and reduction in cell respiration, as catalysed by cytochrome c oxidase, has a long history. The work by Otto Warburg, David Keilin and Britton Chance defined the dioxygen-binding heme iron centre, viz. das Atmungsferment, or cytochrome a(3). Chance brought the field further in the mid-1970's by ingenious low-temperature studies that for the first time identified the primary enzyme-substrate (ES) Michaelis complex of cell respiration, the dioxygen adduct of heme a(3), which he termed Compound A. Further work using optical, resonance Raman, EPR, and other sophisticated spectroscopic techniques, some of which with microsecond time resolution, has brought us to the situation today, where major principles of how O(2) reduction occurs in respiration are well understood. Nonetheless, some questions have remained open, for example concerning the precise structures, catalytic roles, and spectroscopic properties of the breakdown products of Compound A that have been called P, F (for peroxy and ferryl), and O (oxidised). This nomenclature has been known to be inadequate for some time already, and an alternative will be suggested here. In addition, the multiple forms of P, F and O states have been confusing, a situation that we endeavour to help clarifying. The P and F states formed artificially by reacting cytochrome oxidase with hydrogen peroxide are especially scrutinised, and some novel interpretations will be given that may account for previously unexplained observations.  相似文献   

17.
From Pseudomonas AM 1 grown in a medium deficient in Cu, aa3-type cytochrome c oxidase was purified which contained 2 molecules of haem a and one atom of Cu per molecule. The enzyme showed absorption peaks at 428 and 595 nm in the oxidized form and at 442 and 604 nm in the reduced form, and its CO complex showed peaks at 432 and 602 nm. The enzyme in the oxidized state showed an obscure absorption peak around 800 nm instead of a peak at 820 nm. One mol of the enzyme oxidized maximally 76, 75, and 98 mol of the ferrocytochromes c of Candida krusei, horse and Pseudomonas AM 1 per sec, respectively. These reactions were 50% inhibited by 7 microM KCN. The product of reduction of O2 catalyzed by the enzyme was concluded to be H2O on the basis of the ratio of ferrocytochrome c oxidized to O2 consumed.  相似文献   

18.
19.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

20.
Oxidation of sulphide by cytochrome aa3   总被引:1,自引:0,他引:1  
The effectiveness of H2S as an inhibitor of cytochrome c oxidase increase (Ki decreases) with sulphide concentration. A spectroscopic change in cytochrome aa3 is induced aerobically by sulphide at the same rate as that calculated for inhibition. The initial spectroscopic product is not inhibited, but an 'oxygenated' (oxyferri) form of the enzyme. Stoichiometric sulphide addition to cytochrome aa3 under anaerobic conditions produces another low-spin form of the enzyme; subsequent admission of oxygen gives rise to the 607 nm compound. At high enzyme levels sulphide itself acts as a substrate measured polarographically, with an oxygen uptake proportional to the amount of sulphide added. Binding of sulphide to ferric enzyme probably causes reduction at the oxygen-sensitive a3-Cu centre, which is followed aerobically by reoxidation to the oxyferri state via the 607 nm intermediate. A stable sulphide complex is formed only after the reduction of cytochrome a; but once formed this inhibited species is retained if cytochrome a is reoxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号