首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

2.
Mondal M  Chakrabarti A 《FEBS letters》2002,532(3):396-400
The quinoline-based tertiary amine dibucaine has been shown to bind the membrane skeletal protein spectrin with a dissociation constant of 3.5x10(-5) M at 25 degrees C. Such binding is detected by monitoring the quenching of the tryptophan fluorescence intensity with increasing concentrations of dibucaine only and not with the benzene-based local anesthetics procaine, tetracaine and lidocaine. Binding of dibucaine also indicated changes in the tertiary structure of spectrin indicated by a circular dichroism spectrum in the near-UV region due to absorption of the aromatic side chains. The thermodynamic parameters associated with the binding indicated the interaction of dibucaine and spectrin to be enthalpy-driven and insensitive to an increase in the ionic strength of the buffer.  相似文献   

3.
BackgroundBecause ordered membrane domains, called lipid rafts, regulate activation of ion channels related to the nerve pulse, lipids rafts are thought to be a possible target for anesthetic molecules. To understand the mechanism of anesthetic action, we examined influence of representative local anesthetics (LAs); dibucaine, tetracaine, and lidocaine, on raft-like liquid-ordered (Lo)/non-raft-like liquid-disordered (Ld) phase separation.MethodsImpact of LAs on the phase separation was observed by fluorescent microscopy. LA-induced perturbation of the Lo and Ld membranes was examined by DPH anisotropy measurements. Incorporation of LAs to the membranes was examined by fluorescent anisotropy of LAs. The biding location of the LAs was indicated by small angle x-ray diffraction (SAXD).ResultsFluorescent experiments showed that dibucaine eliminated the phase separation the most effectively, followed by tetracaine and lidocaine. The disruption of the phase separation can be explained by their disordering effects on the Lo membrane. SAXD and other experiments further suggested that dibucaine's most potent perturbation of the Lo membrane is attributable to its deeper immersion and bulky molecular structure. Tetracaine, albeit immersed in the Lo membrane as deeply as dibucaine, less perturbs the Lo membrane probably because of its smaller bulkiness. Lidocaine hardly reaches the hydrophobic region, resulting in the weakest Lo membrane perturbation.ConclusionDibcaine perturbs the Lo membrane the most effectively, followed by tetracaine and lidocaine. This ranking correlates with their anesthetic potency.General significanceThis study suggests a possible mechanistic link between anesthetic action and perturbation of lipid rafts.  相似文献   

4.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

5.
The effects of tertiary amine local anesthetics (procaine, lidocaine, tetracaine and dibucaine) and chlorpromazine were investigated for three enzyme activities associated with rat brain synaptosomal membranes, i.e., (Na+ + K+)-ATPase (ouabain-sensitive), Mg2+-ATPase (ouabain-insensitive) and acetylcholinesterase. Approximately the same concentrations of each agent gave 50% inhibition of both ATPase, for example 7.9 and 10 mM tetracaine for Mg2+-ATPase and (Na+ + K+)-ATPase, respectively; these concentrations are 10-fold higher than required for inhibition of mitochondrial F1-ATPase. The relative inhibitory potency of the several agents was proportional to their octanol/water partition coefficients. Acetylcholinesterase was inhibited by all agents tested, but the ester anesthetics (procaine and tetracaine) were considerably more potent than the others after correction for partition coefficient differences. For tetracaine, 0.18 mM gave 50% inhibition and showed competitive inhibition on a Lineweaver-Burk plot, but for dibucaine a mixed type of inhibition was observed, and 0.63 mM was required for 50% inhibition. Tetracaine evidently binds at the active site, and dibucaine at the peripheral or modulator site, on this enzyme.  相似文献   

6.
The interaction of local anesthetics (LA) with biological and phospholipid bilayers was investigated regarding the contribution of their structure and physicochemical properties to membrane partition and to erythrocyte solubilization. We measured the partition into phospholipid vesicles—at pH 5.0 and 10.5—and the biphasic hemolytic effect on rat erythrocytes of: benzocaine, chloroprocaine, procaine, tetracaine, bupivacaine, mepivacaine, lidocaine, prilocaine, and dibucaine. At pH 7.4, the binding of uncharged and charged LA to the membranes was considered, since it results in an ionization constant (pKapp) different from that observed for the anesthetic in the aqueous phase (pKw). Even though it occurred at a pH at which there is a predominance of the charged species, hemolysis was greatly influenced by the uncharged species, revealing that the disrupting effect of LA on these membranes is mainly a consequence of hydrophobic interactions. The correlation between the hemolytic activity and the LA potency shows that hemolytic experiments could be used for the prediction of activity in the development of new LA molecules.  相似文献   

7.
Dibucaine, a local anesthetic, is known to induce flagellar excision in Chlamydomonas reinhardtii. Herein, we investigate whether other local anesthetics have similar effects. Tetracaine, bupivacaine, procaine, and lidocaine also caused flagellar excision, although their potencies were lower than that of dibucaine. Bupivacaine, procaine, and lidocaine induced a morphological change in flagella from a rod‐like shape to a disk‐like shape before flagellar excision. Except for lidocaine, these local anesthetics caused cell‐wall shedding in addition to flagellar excision. The anesthetics in order of their median effective concentration (1‐h EC50) for flagellar excision are as follows: dibucaine (1.37 × 10?5 M) < tetracaine (3.16 × 10?5 M) < bupivacaine (4.25 × 10?4 M) < procaine (2.02 × 10?3 M) < lidocaine (3.61 × 10?3 M). In all cases, Ca2+ depletion from the solution inhibited flagellar excision. However, Ca2+‐channel blockers, IP3 receptor antagonists, and inhibitors of phospholipase C did not prevent excision. We suggest that the local anesthetics induce flagellar excision by increasing the fluidity of the flagellar/cell membrane, thereby allowing extracellular Ca2+ to flow into the cell and cause flagellar excision.  相似文献   

8.
Using quantitative data previously reported for the penetration of local anesthetics into lecithin monolayers, the effects of surface and subphase concentrations of anesthetics on the inhibition of pancreatic phospholipase A2 action on didecanoyl phosphatidylcholine monolayers was investigated. Inhibition as a function of subphase concentration of anesthetic was in the order: dibucaine greater than tetracaine greater than butacaine greater than lidocaine = procaine. Inhibition as a function of surface concentration showed no obvious correlation; procaine inhibited at a very low surface concentration, followed by lidocaine at a somewhat higher concentration, and tetracaine, butacaine and dibucaine only at rather high concentrations. Ultraviolet difference spectroscopy indicated an interaction between lidocaine and enzyme in the subphase. Fluorescence studies showed that lidocaine is a competitive inhibitor of enzyme-lipid interface interaction. It is proposed that the more surface-active anesthetics inhibit by surface effects while the less surface-active anesthetics (lidocaine and procaine) inhibit by interaction with the enzyme in the subphase, which prevents enzyme penetration at the monolayer interface.  相似文献   

9.
The penetration of tetracaine into monolayers of phosphatidylcholine and trioctanoin at different surface pressures, and the penetration of dibucaine, tetracaine, butacaine, lidocaine, and procaine into monolayers of didecanoylphosphatidylcholine at II = 10 mN/m was determined by the use of a modified Gibbs adsorption equation. These data were shown to fit a geometric model and compared favorably with data determined by a method based on the geometric model. The penetration of tetracaine into phosphatidylcholine monolayers was pressure dependent. At II = 10 mN/m, the local anesthetics penetrate into a phosphatidycholine monolayer in the order: dibucaine greater than tetracaine greater than butacaine greater than lidocaine greater than procaine. This correlates with their potencies in blocking nerve conduction and inhibiting phospholipase A2.  相似文献   

10.
The effect of local anesthetics on the stearoyl-CoA desaturase activity was studied using Tetrahymena microsomal preparation. Dibucaine, tetracaine, and propranolol, a beta-blocking agent, nonspecifically inhibited the activities of NADPH-ferrihemoprotein reductase as well as of stearoyl-CoA desaturase and the terminal component, but lidocaine and procaine had no effect on these activities. The inhibitory potency was decreased in the order of dibucaine greater than propranolol greater than tetracaine much greater than lidocaine = procaine. According to the double-reciprocal plots of stearoyl-CoA desaturase, the inhibition by dibucaine appeared to be noncompetitive with respect to stearoyl-CoA as substrate. However, the activity of NADH-ferricyanide reductase was not significantly affected by concentrations of propranolol and tetracaine lower than 10mM, but by dibucaine. The terminal component, cyanide-sensitive factor, was most sensitive to local anesthetics among the microsomal electron transport components, suggesting a rate-limiting enzyme.  相似文献   

11.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

12.
Locations and dynamical perturbations for lipids of local anesthetics (procaine . HCl, tetracaine . HCl, and dibucaine . HCl) in sonicated egg yolk phosphatidylcholine (PC) vesicles have been studied by 1H-1H nuclear Overhauser effect (NOE) measurements. It was found that tetracaine and dibucaine bind much strongly to the neutral lipids than does procaine and that their mobilities are lowered to such an extent that spin diffusion is transmitted (i.e., omega 2 tau c2 much greater than 1). The intermolecular NOEs between drugs and PC were more effective in the case of dibucaine than with tetracaine, indicating that dibucaine binds to the lipids more strongly than tetracaine; this order agrees well with that of anesthetic potency. However, it was only tetracaine that gave any appreciable dynamical perturbation to the PC vesicles when they were monitored by the extent of transfer of the negative NOE from alpha-methylene protons to choline methyls, olefinic methines, acyl methylenes and terminal methyl protons. This finding was interpreted as being due to the differences in the locations of these drugs in small unilamellar vesicles: (1) procaine interacts with lipids very weakly at the outer surface of the vesicles; (2) tetracaine binds to the lipids both at the outer and inner halves of the bilayer, inserting its rod-like molecule in a forest of acyl chains of PC; (3) dibucaine binds tightly to the polar head-group of PC, which resides only at the outer half of the bilayer vesicles. It was concluded that the relative order of anesthetic potency within these drugs can be correlated not with the ability to affect membrane fluidity but with the ability to bind to lipids at the polar head-group of the bilayer vesicles.  相似文献   

13.
The present study describes the simultaneous determination of seven different kinds of local anesthetics and one metabolite by GC–MS with solid-state extraction: Mepivacaine, propitocaine, lidocaine, procaine (an ester-type local anesthetics), cocaine, tetracaine (an ester-type local anesthetics), dibucaine (Dib) and monoethylglycinexylidide (a metabolite of lidocaine) were clearly separated from each other and simultaneously determined by GC–MS using a DB-1 open tubular column. Their recoveries ranged from 73–95% at the target concentrations of 1.00, 10.0 and 100 μg/ml in plasma, urine and water. Coefficients of variation of the recoveries ranged from 2.3–13.1% at these concentrations. The quantitation limits of the method were approximately 100 ng/ml for monoethylglycinexylidide, propitocaine, procaine, cocaine, tetracaine and dibucaine, and 50 ng/ml for lidocaine and mepivacaine. This method was applied to specimens of patients who had been treated with drip infusion of lidocaine, and revealed that simultaneous determination of lidocaine and monoethylglycinexylidide in the blood and urine was possible.  相似文献   

14.
Selective enhancement of bleomycin cytotoxicity by local anesthetics   总被引:1,自引:0,他引:1  
The cytotoxic effect of the antitumor antibiotic bleomycin toward cultured mouse FM3A cells was greatly enhanced by exposure of the cells to local anesthetics either before or together with treatment with bleomycin. Such local anesthetics include dibucaine, tetracaine, butacaine, lidocaine and procaine. Dibucaine-induced cell sensitization to bleomycin cytotoxicity produced a decrease in cell survival that became dependent on dose and time of bleomycin treatment. This effect of local anesthetics seems to be selective to bleomycin, since dibucaine and lidocaine do not enhance the cytotoxic effect of other antitumor agents including adriamycin, mitomycin C and cis-diamminedichloroplatinum(II).  相似文献   

15.
The local anesthetics procaine and tetracaine were found to quench the fluorescence of the probes N-octadecyl naphthyl-2-amine 6-sulfonic acid and 12-(9-anthroyl)stearic acid in the presence of erythrocyte membranes. This quenching was shown to be due to the aromatic amine of the procaine and tetracaine molecules. Lidocaine, an active anesthetic that does not contain an aromatic amine in the same position as does procaine and tetracaine did not quench either of the fluorophores. The preferential quenching of the fluorescent probes by procaine and tetracaine indicated a greater accessibility of tetracaine than of procaine to the hydrocarbon region of the membrane and a greater accessibility of procaine than of tetracaine at the membrane's surface. The addition of calcium was found to reverse the quenching of 12-(9-anthroyl)stearic acid by tetracaine in the presence of red cell membranes.  相似文献   

16.
17.
The effects of procaine, lidocaine, tetracaine and dibucaine (10(-5) - 10(-2) M) were tested on isolated rat liver mitochondria by measurements of the respiratory rates and of the membrane potential and by electron microscopy. A general concentration-dependent stimulation of the basal state (respiration before ADP addition) was observed for all local anesthetics studied. Up to the concentration of 10(-3) M, the order of stimulation was: procaine less than lidocaine less than dibucaine less than tetracaine. However, with the exception of dibucaine, which inhibited state-3 respiration (ADP present) in a strictly concentration-dependent manner, the other drugs had a biphasic effect: slight stimulation of state 3 at low and moderate concentrations (less than or equal to 10(-3) M) and inhibition at higher concentrations. Nevertheless, due to a stronger stimulation of the basal state, the acceptor control ratio decreases progressively (uncoupling effect) as the concentration of the drugs increases. The only exception to this observation is procaine in the range of 10(-5) - 10(-4) M, where the stimulation of the two respiration states (although small) is approximately equal and thus the uncoupling effect is absent or negligible. Membrane potential recordings suggested that membrane integrity and phosphorylation capacity were negatively affected at high drug concentrations (greater than 10(-3) M), especially in the case of tetracaine and dibucaine, when 5 x 10(-3) M even produced the collapse of the membrane potential and complete loss of the phosphorylation ability. Electron microscopy confirmed these effects, showing an abundance of either swollen or supercondensed mitochondria, with many membrane ruptures. The action mechanisms of the tertiary amines studied are discussed in terms of interaction of drug with the lipid bilayer and with the membrane proteins. It is concluded that both the inhibitory and the uncoupling effects are dependent, in the first place, on the degree of hydrophobicity of each local anesthetic.  相似文献   

18.
The effects of the local anesthetics tetracaine, procaine (both charged at pH 6), and benzocaine (uncharged) on phospholipid liposomes have been investigated by 500 MHz 1H NMR Spectroscopy. All the drugs reverse the Pr3+ induced shifts of phospholipid resonances in the same sequence as they are shifted by addition of Pr3+: choline POCH2- > choline-CH2N > choline-N(CH3)3 > glycerol > glycerol > acyl C2 > acyl C3. The drug effects result from incorporation of positive charges (tetracaine and procaine) and from the induction of a conformational change of the phospholipid head group via an action on the lipid glycerol backbone (benzocaine). From titration experiments with tetracaine on liposomes containing Pr3+ inside and outside is derived that the drug passes the bilayer by transverse diffusion. Tetracaine partitions outside/inside at a ratio of 21. Changes in linewidths of the drug resonances when incorporated into the liposomes allow the conclusion that the tetracaine molecule is located in an elongated way between the lipid acyl chains with its nitrogen group near the glycerol backbone. Benzocaine, showing strong effects on the line shapes of the protons on C2 and C3 of the lipid acyl chains is also located near the glycerol backbone, the region with the strongest hydrophobic forces.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 30), Cardiology.  相似文献   

19.
To provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics, we carried out a study of the membrane actions of tetracaine, bupivacaine, lidocaine, prilocaine and procaine. Fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS) were used to examine the effects of local anesthetics on differential rotational mobility between polar region and hydrocarbon interior of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. The two membrane components differed with respect to 2 and 12 anthroyloxy stearate (2-AS, 12-AS) probes, indicating that a difference in the membrane fluidity may be present. In a dose-dependent manner, tetracaine, bupivacaine, lidocaine, prilocaine and procaine decreased anisotropy of 12-AS in the hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but tetracaine, bupivacaine, lidocaine and prilocaine increased anisotropy of 2-AS in the membrane interface. These results indicate that local anesthetics have significant disordering effects on hydrocarbon interior of the SPMV, SPMVTL and SPMVPL, but have significant ordering effects on the membrane interface, and thus they could affect the transport of Na+ and K+ in nerve membranes, leading to anesthetic action.  相似文献   

20.
Summary

We have examined the ability of fertilized eggs of Ilyanassa obsoleta to form polar lobe constrictions and undergo cytokinesis in the presence of several local anesthetics and compared these effects with those of drugs known to affect microtubules. Procaine, lidocaine (Xylocaine), mepivacaine, tetracaine, and dibucaine all delay the beginning of polar lobe constrictions at low concentrations and in the order of their lipid solubilities. All of the anesthetics are effective at lower concentrations in the absence of extracellular Ca2+. Procaine and tetracaine ‘lock’ cells for several hours halfway through the constriction of the polar lobe neck and prevent subsequent cytokinesis, effects similar to those of the microtubule agents, colchicine and nocodazole. Procaine has no effect on membrane potential, ψm, or on intracellular chloride activity, (Cl)c, as determined with ion-selective microelectrodes. This suggests that procaine does not inhibit cellular shape changes by affecting the ionic activities of the predominant intracellular cation (K+) or anion (Cl?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号