共查询到20条相似文献,搜索用时 157 毫秒
1.
Human-β-defensins HBD-1-3 are important components of the innate immune system. Synthetic peptides Phd-1-3 with a single disulphide bond, spanning the cationic C-terminal region of HBD-1-3, have antimicrobial activity. The interaction of Phd-1-3 with model membranes was investigated using isothermal titration calorimetry (ITC) and steady-state fluorescence polarization to understand the biophysical basis for the mechanism of antimicrobial action. Calorimetric titration of POPE:POPG (7:3) vesicles with peptides at 25°C and 37°C showed complex profiles with two distinct regions of heat changes. The data indicate binding of Phd-1-3 at 37°C to both negative and zwitterionic lipid vesicles is exothermic with low enthalpy values (ΔH~-1.3 to -2.8kcal/mol) as compared to amphipathic helical antibacterial peptides. The adsorption of peptides to negatively charged lipid membranes is modulated by electrostatic interactions that are described by surface partition equilibrium model using Gouy-Chapman theory. However, this model could not explain the isotherms of peptide binding to zwitterionic lipid vesicles. Fluorescence polarization of TMA-DPH (1-[4-(trimethylammonio) phenyl]-6-phenyl-1,3,5-hexatriene) and DPH (1,6-diphenyl-1,3,5-hexatriene) located in the head group and acyl chain region respectively, indicates that the peptides interact with interfacial region of negatively charged membranes. Based on the results obtained, we conclude that adsorption of cationic peptides Phd-1-3 on lipid surface do not result in conformational change or pore formation. It is proposed that interaction of Phd-1-3 with the negatively charged lipid head group causes membrane destabilization, which in turn affects the efficient functioning of cytoplasmic membrane proteins in bacteria, resulting in cell death. 相似文献
2.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2016,1860(5):945-956
BackgroundNanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction.Scope of reviewThis review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed.Major conclusionsITC reveals the driving forces behind biomolecule–NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule–NP interactions.General significanceThe thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule–NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah. 相似文献
3.
Claudia Hoffmann Alfred Blume Inge Miller Patrick Garidel 《European biophysics journal : EBJ》2009,38(5):557-568
Therapeutic proteins formulated as liquid solutions at high protein concentration are very sensitive to chemical and physical
degradation. Especially avoiding the formation of protein aggregates is very crucial for product quality. In order to stabilize
the colloidal properties of protein therapeutics various excipient are used. Especially the detergents polysorbate 20 and
80 are common. However, the mechanism upon which the detergents protect the protein from aggregation is not really known.
The present study investigates the interaction of polysorbate 20 and 80 with different proteins: lysozyme, bovine serum albumin
(BSA) and an immunoglobulin. The interaction and binding of the detergents to the proteins is investigated by isothermal titration
calorimetry (ITC). From ITC the thermodynamic parameters (ΔH: change in enthalpy, ΔS: entropy and ΔG: free energy) upon binding are derived as well as the binding constant K
a. The thermal stability of the proteins in the presence of the detergent is assessed by differential scanning calorimetry
(DSC). The results show that both detergents bind to BSA with K
a between 8 and 12 × 103 M−1 with ΔH −50 to −60 kJ/mol (25°C). One to two detergent molecules bind to BSA. The presence of both detergents induces a weak stabilisation
of the thermal denaturation properties of BSA. However, the interaction of polysorbate 20 and 80 with lysozyme and the immunoglobulin
is quite negligible. The presence of the detergents up to a concentration of 2 mM has no impact on the heat capacity curve
neither a destabilisation nor a stabilisation of the native conformation is observed. 相似文献
4.
Lixia Yuan Yabo Shi Hui Yan Jun Han 《Journal of biomolecular structure & dynamics》2019,37(11):2776-2788
Green tea has attracted great interest as a cancer prevention agent. Interactions of tea polyphenols with serum albumin may influence the efficacy of drugs. The interactions of (–)-epigallocatechin-3-gallate (EGCG), (–)-epicatechin-3-gallate (ECG), and tegafur (TF) alone or in combination with human serum albumin (HSA) at pH 7.4 and different temperatures were investigated by spectroscopic methods, isothermal titration calorimetry (ITC), and molecular docking. The binding affinities to HSA were ranked in the order of EGCG?>?ECG?>?TF, and the interactions were spontaneous and exothermic. Ternary system studies showed that the presence of one component hindered the binding of another component to HSA. The secondary structures of HSA were slightly altered in the presence of the ligands. Site marking experiments and molecular docking showed that EGCG and ECG mainly bound to subdomain IIA and ΙΙΙA while TF bound to subdomain ΙΙA and ΙB. Results indicated that the existence of ECG and EGCG would influence the binding of TF to HSA and can increase the free concentration of TF. Obtained results would provide beneficial information about possible interference upon simultaneous co-administration of the tea components and drugs.
Communicated by Ramaswamy H. Sarma 相似文献
5.
α-Tocopherol is a required nutrient for a variety of biological functions. In this study, the binding of α-tocopherol to trypsin and pepsin was investigated using isothermal titration calorimetry (ITC), steady-state and time-resolved fluorescence measurements, circular dichroism (CD) spectroscopy, and molecular modeling methods. Thermodynamic investigations reveal that α-tocopherol binds to trypsin/pepsin is synergistically driven by enthalpy and entropy. The fluorescence experimental results indicate that α-tocopherol can quench the fluorescence of trypsin/pepsin through a static quenching mechanism. The binding ability of α-tocopherol with trypsin/pepsin is in the intermediate range, and one molecule of α-tocopherol combines with one molecule of trypsin/pepsin. As shown by circular dichroism (CD) spectroscopy, α-tocopherol may induce conformational changes of trypsin/pepsin. Molecular modeling displays the specific binding site and gives information about binding forces and α-tocopherol-tryptophan (Trp)/tyrosine (Tyr) distances. In addition, the inhibition rate of α-tocopherol on trypsin and pepsin was studied. The study provides a basic data set for clarifying the binding mechanisms of α-tocopherol with trypsin and pepsin and is helpful for understanding its biological activity in vivo. 相似文献
6.
Abhi Das 《Journal of biomolecular structure & dynamics》2016,34(4):800-813
The interaction of the plant alkaloid aristololactam-β-D-glucoside (ADG) and the anticancer agent daunomycin (DAN) with human hemoglobin was studied by different spectroscopic and calorimetric methods. The binding affinity values of ADG and DAN, estimated from spectroscopic experiments, were 3.79 × 104 and 6.68 × 104 M?1, respectively. From circular dichroism, 3D fluorescence, and FTIR studies it was observed that, DAN induced stronger conformational changes than ADG in the protein. From synchronous fluorescence spectroscopy results, a pronounced shift in the maximum emission wavelength of tyrosine residues was observed in both cases suggesting that the drugs changed the polarity around tyrosine residues with marginal change around the tryptophan residues. The thermodynamics of the binding interaction analyzed using microcalorimetry presented single binding events that were exothermic in nature in both cases. The binding was driven by large positive standard molar entropy changes with small favorable enthalpy contributions. Negative heat capacity changes in both cases are correlated to the involvement of significant hydrophobic forces in the complexation process. The affinity of DAN to Hb was higher than that of ADG. 相似文献
7.
Shuji Yonezawa Kenichiro Fujiwara Takahiko Yamamoto Kazunari Hattori Hidekuni Yamakawa Chie Muto Motoko Hosono Yoshikazu Tanaka Toru Nakano Hiroshi Takemoto Mitsuhiro Arisawa Satoshi Shuto 《Bioorganic & medicinal chemistry》2013,21(21):6506-6522
For further investigation of BACE1 inhibitors using conformational restriction with sp3 hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1′R,2′R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ~0.5 kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring. 相似文献
8.
《Biochemical education》1999,27(2):118-121
The dissociation constant and stoichiometry of a proflavin–chymotrypsin complex are determined by spectroscopic titration and direct nonlinear regression data analysis in a simple experiment during one laboratory period. 相似文献
9.
10.
Conradi J Huber S Gaus K Mertink F Royo Gracia S Strijowski U Backert S Sewald N 《Amino acids》2012,43(1):219-232
The human pathogen Helicobacter pylori that may cause different gastric diseases exploits integrins for infection of gastric cells. The H. pylori protein CagL present on the outer region of the type IV secretion pilus contains an RGD sequence (-Arg-Gly-Asp-) that enables binding to cells presenting integrins α5β1 and αVβ3. This interaction can be inhibited with conformationally designed cyclic RGD peptides derived from the CagL epitope -Ala-Leu-Arg-Gly-Asp-Leu-Ala-. The inhibition of the CagL-αVβ3 interaction by different RGD peptides strongly suggests the importance of the RGD motif for CagL binding. CagL point mutants (RAD, RGA) show decreased affinity to integrin αVβ3. Furthermore, structure-activity relationship studies with cyclic RGD peptides in a spatial screening approach show the distinct influence of the three-dimensional arrangement of RGD motif on the ability to interfere with this interaction. Resulting from these studies, similar structural requirements for the CagL epitope as previously suggested for other ligands of integrin αVβ3 are proposed. 相似文献
11.
《生物化学与生物物理学报:生物膜》2014,1838(10):2728-2738
Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ΔGm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ΔGm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2− stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs. 相似文献
12.
Antimicrobial peptides are an important component of innate immunity and have generated considerable interest as a new potential class of natural antibiotics. The biological activity of antimicrobial peptides is strongly influenced by peptide–membrane interactions. Human Neutrophil Peptide 1 (HNP-1) is a 30 aminoacid peptide, belonging to the class of α-defensins. Many biophysical studies have been performed on this peptide to define its mechanism of action. Combining spectroscopic and thermodynamic analysis, insights on the interaction of the α-defensin with POPE:POPG:CL negative charged bilayers are given. The binding states of the peptide below and above the threshold concentration have been analyzed showing that the interaction with lipid bilayers is dependent by peptide concentration. These novel results that indicate how affinity and biological activities of natural antibiotics are depending by their concentration, might open new way of investigation of the antimicrobial mode of action. 相似文献
13.
Wen Hwa Lee Elisabeth Schaffner-Reckinger Demokritos C. Tsoukatos Kelly Aylward Vassilios Moussis Vassilios Tsikaris Paraskevi Trypou Marion Egot Dominique Baruch Nelly Kieffer Christilla Bachelot-Loza 《PloS one》2015,10(9)
Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding. 相似文献
14.
Dmitry A. Semchonok Jean-Paul Chauvin Raoul N. Frese Colette Jungas Egbert J. Boekema 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1608):3412-3419
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)—antenna complexes (RC–LH1–PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC–LH1–PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC. 相似文献
15.
16.
17.
Yohsuke Kikuchi Yusuke Naka Hidemitsu Osakabe Tetsuaki Okamoto Tomoko Masaike Hiroshi Ueno Shoichi Toyabe Eiro Muneyuki 《Biophysical journal》2013,105(11):2541-2548
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy. 相似文献
18.
Carmen Peess Leopold von Proff Sabine Goller Karl Andersson Michael Gerg Magnus Malmqvist Birgit Bossenmaier Michael Schr?ml 《PloS one》2015,10(2)
For the development of efficient anti-cancer therapeutics against the HER receptor family it is indispensable to understand the mechanistic model of the HER receptor activation upon ligand binding. Due to its high complexity the binding mode of Heregulin 1 beta (HRG1β) with its receptor HER3 is so far not understood. Analysis of the interaction of HRG1β with surface immobilized HER3 extracellular domain by time-resolved Surface Plasmon Resonance (SPR) was so far not interpretable using any regular analysis method as the interaction was highly complex. Here, we show that Interaction Map (IM) made it possible to shed light on this interaction. IM allowed deciphering the rate limiting kinetic contributions from complex SPR sensorgrams and thereby enabling the extraction of discrete kinetic rate components from the apparently heterogeneous interactions. We could resolve details from the complex avidity-driven binding mode of HRG1β with HER3 by using a combination of SPR and IM data. Our findings contribute to the general understanding that a major conformational change of HER3 during its activation is induced by a complex sequential HRG1β docking mode. 相似文献
19.
Ognjen Grujic 《Biochemical and biophysical research communications》2009,383(4):401-405
Previously, we have shown that RalA, a calmodulin (CaM)-binding protein, binds to the C2 region in the C-terminal of PLC-δ1, and increases its enzymatic activity. Since PLC-δ1 contains a CaM-like region in its N-terminus, we have investigated if RalA can also bind to the N-terminus of PLC-δ1. Therefore, we created a GST-PLC-δ1 construct consisting of the first 294 amino acids of PLC-δ1 (GST-PLC-δ11-294). In vitro binding experiments confirmed that PLC-δ11-294 was capable of binding directly to RalA. W-7 coupled to polyacrylamide beads bound pure PLC-δ1, demonstrating that PLC-δ1 contains a CaM-like region. Competition assays with W-7, peptides representing RalA and the newly identified RalB CaM-binding regions, or the IQ peptide from PLC-δ1 were able to inhibit RalA binding to PLC-δ11-294. This study demonstrates that there are two binding sites for RalA in PLC-δ1 and provides further insight into the role of Ral GTPase in the regulation of PLC-δ1 function. 相似文献
20.
Sheikh K Giordani C McManus JJ Hovgaard MB Jarvis SP 《Chemistry and physics of lipids》2012,165(2):142-150
Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content. 相似文献