首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pure phospholipid vesicles, the conductivity of H+/OH ions exceeds that for other simple inorganic ions. Protons achieve electrochemical equilibrium across egg phosphatidylcholine vesicles within tens of minutes. When pH gradients are established across vesicles, transmembrane potentials develop. Conversely, the establishment of transmembrane potentials leads to the formation of pH gradients. When the phenomenological permeability of H+/OH ions in vesicles is estimated, values are obtained that are much greater (six orders of magnitude larger) than those for Na+ or K+. A wide range in the values for this permeability has been reported; however, much of the discrepancy can be attributed to differences in the vesicle systems and experimental conditions. The H+/OH current appears to be modulated by changes in membrane dielectric constant. However, the dependence of this current on the pH gradient and on the membrane voltage argues against simple diffusion mechanisms as the source of the H+/OH current. In addition, in vesicle systems the H+/OH current shows a surprising invariance to changes in the membrane dipole potential, an observation that argues against the role of simple carriers for H+ and OH ions.  相似文献   

2.
Choline phospholipid metabolism: A target in cancer cells?   总被引:6,自引:0,他引:6  
The experience of treating cancer over the past several decades overwhelmingly demonstrates that the disease continues to evade the vast array of drugs and treatment modalities available in the twenty-first century. This is not surprising in view of the complexity of this disease, and the multiplicities of pathways available to the cancer cell to enable its survival. Although the progression of cancer arrives at a common end point of cachexia, organ failure, and death, common pathways are rare in cancer. Identifying and targeting common pathways that would act across these levels of multiplicity is essential for the successful treatment of this disease. Over the past decade, one common characteristic consistently revealed by magnetic resonance spectroscopic studies is the elevation of phosphocholine and total choline-containing compounds in cancer cells and solid tumors. This elevation has been observed in almost every single cancer type studied with NMR spectroscopy and can be used as an endogenous biomarker of cancer. In this article, we have summarized some of the observations on the choline phospholipid metabolism of cancer cells and tumors, and make a case for targeting the aberrant choline phospholipid metabolism of cancer cells.  相似文献   

3.
Binding of the positively charged drug chlorpromazine to phospholipid monolayers was investigated. A preferential uptake was observed near the phase transtion of the corresponding lipid. Cholesterol considerably diminishes the chlorpromazine uptake, again particularly near a lipid phase transition. The binding properties depend on the chlorpromazine concentration in the subphase. A critical concentration is 5·10-5M, where higher uptake occurs in the liquid condensed than in the liquid expanded state of the monolayer at pressures of about 10 mN/m. Dipalmitoylphosphatidylcholine monolayers spread on a subphase containing chlorpromazine are comparable to monolayers at higher temperature but in the absence of chlorpromazine. These data are in agreement with previous fluorescence and electron paramagnetic resonance experiments on lipid bilayer membranes (Luxnat and Galla 1986).Abbreviations CPZ chlorpromazine - DPPC dipalmitoylphosphatidylcholine - DMPC dimyristoylphosphatidylcholine - LE liquid expanded - LC liquid condensed  相似文献   

4.
A study has been conducted of the interaction of the lytic toxin δ-haemolysin with vesicles of phospholipid, using electron microscopy, fluorescence depolarisation and excimer fluorescence. The peptide is shown to be a fusogen towards phosphatidylcholine vesicles in fluid phases. In the presence of gel phase lipid, fusion between fluid and gel phases is not seen. Fluid phase lipid vesicles are fused together to form large multilamellar structures, and initial vesicle size does not appear to be important since small unilamellar vesicles and large unilamellar vesicles are similarly affected. Fusogenic activity of δ-haemolysin is compared to that of melittin. The former is a progressive fusogen for fluid phase lipid, while the latter causes vesicle fusion in a manner related to occurrence of a lipid phase transition.  相似文献   

5.
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.  相似文献   

6.
Journal of Molecular Modeling - We studied the doping effects on the electronic and structural properties of graphene upon interaction with phenol. Calculations were performed within the periodic...  相似文献   

7.
EK Tang  EW Tieu  RC Tuckey 《The FEBS journal》2012,279(19):3749-3761
CYP27B1 is a mitochondrial cytochrome P450 that catalyses the hydroxylation of 25-hydroxyvitamin D3 at the C1α-position to give the hormonally active form of vitamin D3, 1α,25-dihydroxyvitamin D3. We successfully expressed human CYP27B1 in Escherichia?coli and partially purified this labile enzyme and carried out a detailed characterization of its kinetic properties in a reconstituted membrane environment. The phospholipid concentration did not affect the enzyme activity in the vesicle-reconstituted system, although it was influenced by the phospholipid composition, with the addition of cardiolipin lowering the K(m) for 25-hydroxyvitamin D3. These data are consistent with the enzyme accessing substrate from the hydrophobic domain of the vesicle membrane. Cardiolipin also caused the appearance of inhibition of activity at high substrate concentrations. This substrate inhibition fitted a model for one catalytic and two inhibitory sites on the enzyme for the binding of substrate. The K(m) for human adrenodoxin was observed to decrease with decreasing substrate concentration, with the catalytic efficiency (k(cat) /K(m) ) being largely independent of adrenodoxin concentration. Human CYP27B1 was also active on 25-hydroxyvitamin D(2) and on intermediates of the CYP24A1-mediated inactivation pathway, 24R,25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, with all these substrates showing comparable k(cat) values of 50-71?min(-1) , similar to 25-hydroxyvitamin D3. The latter two substrates gave higher K(m) values than that for 25-hydroxy-vitamin D3. The present study shows that human CYP27B1 can be partially purified in an active form with the enzyme displaying high activity towards a range of substrates in a phospholipid vesicle-reconstituted system that mimics the inner-mitochondrial membrane.  相似文献   

8.
The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO2 and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P2 (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P2 and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.  相似文献   

9.
Rat brain proteins presenting high-affinity binding of S-adenosyl-L-homocysteine were solubilized and purified. Extraction of binding protein was carried out in the presence of Triton X-100 and 1 M NaCl; this solubilized fraction exhibits similar kinetic properties than the membrane proteins. Purification was performed using affinity chromatography on S-adenosyl-L-homocysteine carboxyhexyl Sepharose 48 conjugate. The analysis of the affinity gel eluate by SDS-PAGE showed high purification ratios for two proteins exhibiting 54 and 68 kDa. Three activity peaks were separated when solubilized membrane proteins were submitted to isoelectric focusing; the activity peaks corresponded to proteins of pH, 6.0, 6.5, and 7.2. SDS-PAGE separation of proteins contained in each peak showed protein aggregation; a 54-kDa subunit was present in each aggregate. Solubilized membrane proteins were labeled by photoaffinity labeling with tritiated S-adenosyl-L-homocysteine; the 54-and 68-kDa proteins were found among the specifically labeled proteins. Finally, according to the previous data from the literature, the purified S-adenosyl-L-homocysteine binding proteins do not seem to be the same as adenosine receptors or phosphatidylethanolamine-N-methyltransferase.  相似文献   

10.
Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.  相似文献   

11.
Sec14, a yeast phosphatidylinositol/phosphatidylcholine transfer protein, functions at the trans-Golgi membranes. It lacks domains involved in protein-protein or protein-lipid interactions and consists solely of the Sec14 domain; hence, the mechanism underlying Sec14 function at proper sites remains unclear. In this study, we focused on the lipid packing of membranes and evaluated its association with in vitro Sec14 lipid transfer activity. Phospholipid transfer assays using pyrene-labelled phosphatidylcholine suggested that increased membrane curvature as well as the incorporation of phosphatidylethanolamine accelerated the lipid transfer. The quantity of membrane-bound Sec14 significantly increased in these membranes, indicating that “packing defects” of the membranes promote the membrane binding and phospholipid transfer of Sec14. Increased levels of phospholipid unsaturation promoted Sec14-mediated PC transfer, but had little effect on the membrane binding of the protein. Our results demonstrate the possibility that the location and function of Sec14 are regulated by the lipid packing states produced by a translocase activity at the trans-Golgi network.  相似文献   

12.
《BBA》1985,810(1):73-83
Studies on monomolecular layers of phospholipids containing the antenna protein B800–850 (LHCP) and in some cases additionally the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides are reported. Information on monolayer preparation as well as on protein/lipid and protein/protein interaction is obtained by means of fluorescence spectroscopy and microscopy at the air/water interface in combination with film balance experiments. It is shown that a homogeneous distribution of functional proteins can be achieved. This can be transformed into a regular pattern-like distribution by inducing a phospholipid phase transition. Although the LHCP preferentially partitions into the fluid lipid phase, it decreases the lateral pressure necessary to crystallize the lipid. This is probably due to an increase in order of the fluid phase. A pressure-induced conformation change of the LHCP is detected via a drastic change in fluorescence yield. A highly efficient energy transfer from LHCP to the reaction center is observed. This proves the quantitative reconstitution of both types of proteins and indicates protein aggregation also in the monolayer.  相似文献   

13.
The spontaneous self-assembly of α-synuclein (α-syn) into aggregates of different morphologies is associated with the development of Parkinson's disease. However, the mechanism behind the spontaneous assembly remains elusive. The current study shows a novel effect of phospholipid bilayers on the assembly of the α-syn aggregates. Using time-lapse atomic force microscopy, it was discovered that α-syn assembles into aggregates on bilayer surfaces, even at the nanomolar concentration range. The efficiency of the aggregation process depends on the membrane composition, with the greatest efficiency observed for of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS). Importantly, assembled aggregates can dissociate from the surface, suggesting that on-surface aggregation is a mechanism by which pathological aggregates may be produced. Computational modeling revealed that dimers of α-syn assembled rapidly, through the membrane-bound monomer on POPS bilayer, due to an aggregation-prone orientation of α-syn. Interaction of α-syn with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) leads to a binding mode that does not induce a fast assembly of the dimer. Based on these findings, we propose a model in which the interaction of α-syn with membranes plays a critical role initiating the formation of α-syn aggregates and the overall aggregation process.  相似文献   

14.
Mixed cell suspensions from rabbit brain have been used to study the effect of base exchange in membrane phospholipids, on amino acid accumulation in vitro. -Aminobutyric acid (GABA), glutamic acid, and aminoisobutyric acid have been used. The accumulation of [3H]GABA, at concentrations employing the high-affinity uptake system, was measured after base-exchange reactions with ethanolamine, choline, orL-serine. Serine incorporation induced an increase of GABA uptake at all the concentrations used, while choline incorporation essentially led to inhibition of GABA accumulation. Ethanolamine exchange produced both stimulation and inhibition. The observed effects were not specific for GABA. Neuronal and glial cell perikarya and synaptosomes were studied in the same system in an attempt to resolve the complex type of response obtained with the mixed suspension. Cell specificity was found with respect to stimulation or inhibition of GABA transport after base exchange but, in some cases, the isolated fractions retained the multiphasic response observed with the mixed suspension.  相似文献   

15.
Phospholipase A(2) plays a role in cholesterol gallstone formation by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. This study investigated its effects on cholesterol crystallization in model bile systems. Supersaturated model bile solutions with different cholesterol saturation indexes (1.2, 1.4, and 1.6) were prepared using cholesterol, taurocholate, and egg yolk phosphatidylcholine, soybean phosphatidylcholine, palmitoyl-oleoyl phosphatidylcholine, or palmitoyl-linoleoyl phosphatidylcholine. Then the effect of digestion of phosphatidylcholine by phospholipase A(2) on bile metastability was assessed by spectrophotometry and video-enhanced differential contrast microscopy. Addition of phospholipase A(2) caused the release of free fatty acids in a time-dependent manner. Cholesterol crystallization was enhanced by an increased crystal growth rate in model bile containing hydrophilic species such as soybean or palmitoyl-linoleoyl phosphatidylcholine, consisting predominantly of polyunsaturated fatty acids. Because phospholipase A(2) enhanced cholesterol crystallization in bile containing hydrophilic phosphatidylcholine species, but not hydrophobic phosphatidylcholine species, release of polyunsaturated fatty acids by hydrolysis may be responsible for such enhancement. Therefore, the role of phospholipase A(2) in cholesterol gallstone formation depends on the phospholipid species present in bile, so that phospholipid species selection during hepatic excretion is, in part, crucial to the cholesterol stone formation.  相似文献   

16.
The α2 isoform of Na,K-ATPase plays a crucial role in Ca2+ handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1β1, α2β1, and α3β1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1). We have examined an hypothesis that instability of α2 is caused by weak interactions with phosphatidylserine, which stabilizes the protein. Three residues, unique to α2, in trans-membrane segments M8 (Ala-920), M9 (Leu-955), and M10 (Val-981) were replaced by equivalent residues in α1, singly or together. Judged by the sensitivity of the purified proteins to heat, detergent, “affinity” for phosphatidylserine, and stabilization by FXYD1, the triple mutant (A920V/L955F/V981P, called α2VFP) has stability properties close to α1, although single mutants have only modest or insignificant effects. Functional differences between α1 and α2 are unaffected in α2VFP. A compound, 6-pentyl-2-pyrone, isolated from the marine fungus Trichoderma gamsii is a novel probe of specific phospholipid-protein interactions. 6-Pentyl-2-pyrone inactivates the isoforms in the order α2 ≫ α3 > α1, and α2VFP and FXYD1 protect the isoforms. In native rat heart sarcolemma membranes, which contain α1, α2, and α3 isoforms, a component attributable to α2 is the least stable. The data provide clear evidence for a specific phosphatidylserine binding pocket between M8, M9, and M10 and confirm that the instability of α2 is due to suboptimal interactions with phosphatidylserine. In physiological conditions, the instability of α2 may be important for its cellular regulatory functions.  相似文献   

17.
Human phospholipid scramblase 1 (hPLSCR1) scrambles plasma membrane phospholipids during cell activation, blood coagulation and apoptosis. It was over-expressed in E. coli with a histidine tag and purified from the inclusion bodies (~30 mg/l culture broth) under denaturing conditions using 8 M urea. The denatured hPLSCR1 refolded into its native configuration when urea was removed as shown by a 10-fold increase in its intrinsic fluorescence. Active hPLSCR1 showed scrambling activity in vitro after reconstituting in proteoliposomes. hPLSCR1 showed higher rates of scrambling activity for phosphatidylethanolamine than phosphatidylcholine. Binding studies with the calcium analogue “Stains-all” dye showed a characteristic peak, termed as the J band, at 650 nm. This is the first report on high level expression of hPLSCR1 with histidine tag in E. coli.  相似文献   

18.
Interactions between the fluorophors diphenylhexatriene or gramicidin A′ and lipids are examined using a spin-labeled phosphatidylcholine as a fluorescence quenching probe. It is found that in phospholipid vesicles of mixed lipid composition at temperatures where phospholipids are completely in the liquid crystal phase, several different species of phosphatidylcholines are randomly distributed around the fluorophors. In vesicles of mixed lipid composition which can undergo thermally induced phase separations, the fluorescence quenching observed at lower temperatures reflects a non-random distribution of lipids around each fluorophor. This observation is explained in terms of the partition of fluorophor between a spin-labeled lipid-rich liquid crystal phase, and a spin-labeled lipiddepleted gel phase. Gramicidin A′ strongly favors partition into the liquid crystal phase, whereas diphenylhexatriene partitions about equally between the two lipid phases. A method is described utilizing fluorescence quenching for the calculation of the partition coefficient for a fluorophor. The partition coefficients so calculated are shown to be in good agreement with previously reported values derived from other methods. It is also shown that Ca2+-induced lipid phase separations can be monitored by fluorescence quenching.  相似文献   

19.
Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.  相似文献   

20.
Liver FABP (fatty-acid-binding protein) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, lysophospholipids and bile acids. Liver FABP is also able to bind to anionic phospholipid vesicles under conditions of low ionic strength, and membrane binding results in the release of bound ligand. However, the molecular interactions involved in binding to the phospholipid interface and the mechanism of ligand release are not known. Ligand release could be due to a significant conformational change in the protein at the interface or interaction of a phospholipid molecule with the ligand-binding cavity of the protein resulting in ligand displacement. Two portal mutant proteins of liver FABP, L28W and M74W, have now been used to investigate the binding of liver FABP to anionic phospholipid vesicles, monitoring changes in fluorescence and also fluorescence quenching in the presence of brominated lipids. There is a large increase in fluorescence intensity when the L28W mutant protein binds to vesicles prepared from DOPG (dioleoyl-sn-phosphatidylglycerol), but a large decrease in fluorescence intensity when the M74W mutant binds to these vesicles. The Br(4)-phospholipid prepared by bromination of DOPG dramatically quenches both L28W and M74W, consistent with the close proximity of a fatty acyl chain to the tryptophan residues. The binding of liver FABP to DOPG vesicles is accompanied by only a minimal change in the CD spectrum. Overall, the results are consistent with a molecule of anionic phospholipid interacting with the central cavity of the liver FABP, possibly involving the phospholipid molecule in an extended conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号