共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I. 相似文献
2.
Background
The complexity of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase) has increased considerably relative to the homologous complex in bacteria. Comparative analyses of CI composition in animals, fungi and land plants/green algae suggest that novel components of mitochondrial CI include a set of 18 proteins common to all eukaryotes and a variable number of lineage-specific subunits. In plants and green algae, several purportedly plant-specific proteins homologous to γ-type carbonic anhydrases (γCA) have been identified as components of CI. However, relatively little is known about CI composition in the unicellular protists, the characterizations of which are essential to our understanding of CI evolution. 相似文献3.
Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive. 相似文献
4.
Each cryptomonad strain contains only a single spectroscopic type of biliprotein. These biliproteins are isolated as 50000 kDa '2 complexes which carry one bilin on the and three on the subunit. Six different bilins are present on the cryptomonad biliproteins, two of which (phycocyanobilin and phycoerythrobilin) also occur in cyanobacterial and rhodophytan biliproteins, while four are known only in the cryptomonads. The subunit is encoded on the chloroplast genome, whereas the subunits are encoded by a small nuclear multigene family. The subunits of all cryptomonad biliproteins, regardless of spectroscopic type, have highly conserved amino acid sequences, which show > 80% identity with those of rhodophytan phycoerythrin subunits. In contrast, cyanobacteria and red algal chloroplasts each contain several spectroscopically distinct biliproteins organized into macromolecular complexes (phycobilisomes). The data on biliproteins, as well as several other lines of evidence, indicate that the cryptomonad biliprotein antenna system is primitive and antedates that of the cyanobacteria. It is proposed that the gene encoding the cryptomonad biliprotein subunit is the ancestral gene of the gene family encoding cyanobacterial and rhodophytan biliprotein and subunits.Abbreviations Chl
chlorophyll
- CER
chloroplast endoplasmic reticulum
- SSU rRNA
small subunit ribosomal RNA 相似文献
5.
Robert Cruickshank 《BMJ (Clinical research ed.)》1952,1(4751):212-214
6.
MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmembrane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was investigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed for function, the C-terminal domain of MrpA was absolutely required. 相似文献
7.
The heme–copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs). We suggest that the C-type oxidases are ancient enzymes that emerged from the NORs. In contrast, the A-type oxidases are the most advanced from both structural and functional viewpoints, which we interpret as evidence for having evolved later. 相似文献
8.
Bart Voorzanger 《Biology & philosophy》1987,2(3):253-270
Many think that evolutionary biology has relevance to ethics, but how far that relevance extends is a matter of debate. It is easy to show that pop sociobiological approaches to ethics all commit some type of naturalistic fallacy. More sophisticated attempts, like Donald Campbell's, or, more recently, Robert Richards', are not so easily refuted, but I will show that they too reason fallaciously from facts to values. What remains is the possibility of an evolutionary search for human nature. Unfortunately, evolutionary theory itself seems to imply that the quest for human nature will not be very promising. As far as there is such a thing as human nature, we will have to know it before we can meaningfully talk about its evolution. Anthropological data suggest that we differ widely in our normative judgments. And even where we seem to agree, there is good reason to doubt that we really do so. 相似文献
9.
The 2 micron plasmid purloins the yeast cohesin complex: a mechanism for coupling plasmid partitioning and chromosome segregation? 下载免费PDF全文
Mehta S Yang XM Chan CS Dobson MJ Jayaram M Velmurugan S 《The Journal of cell biology》2002,158(4):625-637
The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes. 相似文献
10.
The deterministic properties of a two-locus model with mutation and selection have been investigated. The mutation process is unidirectional, and the model is so constructed that the genetic variation at one locus is selectively neutral in the absence of a mutant allele at the other locus. All genotypes with three or four mutant alleles are deleterious, while the double heterozygotes may have the same fitness as the standard genotype. If one of the mutant alleles becomes fixed in the population, then the other locus will show a regular one-locus mutation-selection balance. Such a boundary equilibrium may be unstable or stable in the full two-locus setting. In the symmetric case, which is analyzed in details, the population will either go to one of the two boundary equilibria, or to a fully polymorphic equilibrium at which both the mutant alleles are rare. The origin of reproductive separation between two populations via the fixation of complementary deleterious mutants at different loci, and the fixation of nonfunctional alleles at duplicated loci, are two biological processes which both can be studied with the present model. In the last part of the paper we show how the results from the deterministic analysis can be used to predict how different factors will influence the rates of evolution in these systems. 相似文献
11.
γ-Secretase is a membrane protein complex that proteolyzes within the transmembrane domain of >100 substrates, including those derived from the amyloid precursor protein and the Notch family of cell surface receptors. The nine-transmembrane presenilin is the catalytic component of this aspartyl protease complex that carries out hydrolysis in the lipid bilayer. Advances in cryoelectron microscopy have led to the elucidation of the structure of the γ-secretase complex at atomic resolution. Recently, structures of the enzyme have been determined with bound APP- or Notch-derived substrates, providing insight into the nature of substrate recognition and processing. Molecular dynamics simulations of substrate-bound enzymes suggest dynamic mechanisms of intramembrane proteolysis. Structures of the enzyme bound to small-molecule inhibitors and modulators have also been solved, setting the stage for rational structure-based drug discovery targeting γ-secretase. 相似文献
12.
13.
14.
First coined by Alexander Sandow in 1952, the term excitation–contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks. 相似文献
15.
Thomas Anderson 《BMJ (Clinical research ed.)》1952,2(4792):1037-1039
16.
Stephen J. Boulter 《Biology & philosophy》2007,22(3):369-382
Recently in these pages it has been argued that a relatively straightforward version of an old argument based on evolutionary
biology and psychology can be employed to support the view that innate ideas are a naturalistic source of metaphysical knowledge.
While sympathetic to the view that the “evolutionary argument” is pregnant with philosophical implications, I show in this
paper how it needs to be developed and deployed in order to avoid serious philosophical difficulties and unnecessary complications.
I sketch a revised version of the evolutionary argument, place it in a new context, and show that this version in this context
is not vulnerable to the standard criticisms levelled against arguments of this general type. The philosophical import of
this version of the argument lies not in any metaphysical conclusions it sanctions directly, but in the support it lends to
the metaphilosophy of commonsense. 相似文献
17.
18.
The mechanism of C-banding: depurination and β-elimination 总被引:2,自引:0,他引:2
Gerald Holmquist 《Chromosoma》1979,72(2):203-224
C-banding of chromosomes involves the differential solubilization of fragmented DNA from euchromatin by three sequential treatments: 1. Acid, 2. Mild base, 3. Hot salt. The data indicate solubilization is effected by 1) depurination, 2) DNA denaturation, 3) chain breakage of the depurinated sites respectively in the three treatments. Conditions were found wherein each treatment in proper sequence was necessary for C-banding and the appropriate chemical reactions were measured in these treatment conditions. The acid treatment (0.2 N HCl) depurinates chromosomal DNA at the rate of 0.26×10–6 purines/dalton min to an alkaline molecular weight of 105 daltons but does not break the depurinated sites. Bleomycin can substitute for acid as a base removing agent. Sodium borohydride, by reducing the depurinated sugar's aldehyde thereby preventing chain breakage by the -elimination reaction, reversibly inhibits DNA-extraction. Chain breakage at the DNA's apurinic sites occurs not in the 2 min mild alkali treatment where the half-life for breakage is 26 min but in the 18 h hot salt treatment where the half-life for chain breakage is 1–2 h. Most of the DNA extraction occurs in the hot salt as 105 dalton fragments as measured in formamide gradients. Bleomycin is introduced as a substitute for HCl; it removes nitrogenous bases from DNA in situ while better preserving the morphology of the final C-banded chromosomes. 相似文献
19.
20.
Jing Yang Y. Adam Yuan 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2009,1789(9-10):642-652
Small RNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-associated interfering RNAs (piRNAs), are powerful gene expression regulators. This RNA-mediated regulation results in sequence-specific inhibition of gene expression by translational repression and/or mRNA degradation. siRNAs and miRNAs are generated by RNase III enzymes and subsequently loaded into Argonaute protein, a key component of the RNA induced silencing complex (RISC), to form the core of the RNA silencing machinery. RNA silencing acts as an ancient cell defense system against molecular parasites, such as transgenes, viruses and transposons. RNA silencing also plays an important role in the control of development. In plants, RNA silencing serves as a potent antiviral defense system. In response, many viruses have developed strategies to suppress RNA silencing. The striking sequence diversity among viral suppressors suggests that different viral suppressors could target different components of the RNA silencing machinery at different steps in different suppressing modes. Significant progresses have been made in this field for the past 5 years on the basis of structural information derived from RNase III family proteins, Dicer fragments and homologs, Argonaute homologs and viral suppressors. In this paper, we will review the current progress on the understanding of molecular mechanisms of RNA silencing; highlight the structural principles determining the protein–RNA recognition events along the RNA silencing pathways and the suppression mechanisms displayed by viral suppressors. 相似文献