首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post‐translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus‐responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.  相似文献   

2.
3.
Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E′. Substrate can bind to E and/or E′, both Michaelian complexes ES and E’s can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.  相似文献   

4.
By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure.  相似文献   

5.
6.
Conformations and catalytic rates of enzymes fluctuate over a wide range of timescales. Despite these fluctuations, there exist some limiting cases in which the enzymatic catalytic rate follows the macroscopic rate equation such as the Michaelis-Menten law. In this paper we investigate the applicability of macroscopic rate laws for fluctuating enzyme systems in which catalytic transitions are slower than ligand binding-dissociation reactions. In this quasi-equilibrium limit, for an arbitrary reaction scheme we show that the catalytic rate has the same dependence on ligand concentrations as obtained from mass-action kinetics even in the presence of slow conformational fluctuations. These results indicate that the timescale of conformational dynamics – no matter how slow – will not affect the enzymatic rate in quasi-equilibrium limit. Our numerical results for two enzyme-catalyzed reaction schemes involving multiple substrates and inhibitors further support our general theory.  相似文献   

7.
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons'' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission.  相似文献   

8.
Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.  相似文献   

9.
10.
The bacterial enzyme aminoglycoside phosphotransferase(3′)-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in various APH complexes, although crystallographic studies indicate that no larger conformational changes occur upon ligand binding. Isothermal titration calorimetry also shows different thermodynamic contributions to ligand binding. Formation of aminoglycoside-APH complexes is enthalpically driven, while the enthalpic change upon aminoglycoside binding to the nucleotide-APH complex is much smaller. The differential effects of nucleotide binding and antibiotic binding to APH can be explained theoretically by single-residue fluctuations and correlated motions of the enzyme. The surprising destabilization of β-sheet residues upon nucleotide binding, as seen in hydrogen/deuterium exchange experiments, shows that the number of closest neighbors does not fully explain residue flexibility. Additionally, we must consider correlated motions of dynamic protein domains, which show that not only connectivity but also the overall protein architecture is important for protein dynamics.  相似文献   

11.
The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results.  相似文献   

12.
Serine protease proteinase K, a member of the subtilisin family of enzymes, is of significant industrial, agricultural and biotechnological importance. Despite the wealth of structural information about proteinase K provided by static X-ray structures, a full understanding of the enzymatic mechanism requires further insight into the dynamic properties of this enzyme. Molecular dynamics simulations and essential dynamics (ED) analysis were performed to investigate the molecular motions in proteinase K. The results indicate that the internal core of proteinase K is relatively rigid, whereas the surface-exposed loops, most notably the substrate-binding regions, exhibit considerable conformational fluctuations. Further ED analysis reveals that the large concerted motions in the substrate-binding regions cause opening/closing of the substrate-binding pockets, thus supporting the proposed induced-fit mechanism of substrate binding. The distinct electrostatic/hydrogen-bonding interactions between Asp39 and His69 and between His69 and Ser224 within the catalytic triad lead to different thermal motions and orientations of these three catalytic residues, which can be related to their different functional roles in the catalytic process. Statistical analyses of the geometrical/functional properties as well as evolutionary conservation of the glycines in proteinase K-like proteins reveal that glycines may play an important role in determining the folding architecture and structural flexibility of this class of enzymes. Our simulation study complements the biochemical and structural studies and provides new insights into the dynamic structural basis of the functional properties of this class of enzymes.  相似文献   

13.
Reynolds KA  McLaughlin RN  Ranganathan R 《Cell》2011,147(7):1564-1575
Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved "wiring" mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.  相似文献   

14.
Conformational changes are essential for the activity of many proteins. If, or how fast, internal fluctuations are related to slow conformational changes that mediate protein function is not understood. In this study, we measure internal fluctuations of the transport protein lactose permease in the presence and absence of substrate by tryptophan fluorescence spectroscopy. We demonstrate that nanosecond fluctuations of alpha-helices are enhanced when the enzyme transports substrate. This correlates with previously published kinetic data from transport measurements showing that millisecond conformational transitions of the substrate-loaded carrier are faster than those in the absence of substrate. These findings corroborate the hypothesis of the hierarchical model of protein dynamics that predicts that slow conformational transitions are based on fast, thermally activated internal motions.  相似文献   

15.
Model‐based analysis of enzyme kinetics allows the determination of optimal conditions for their use in biocatalysis. For biotransformations or fermentative approaches the modeling of metabolic pathways or complex metabolic networks is necessary to obtain model‐based predictions of steps which limit product formation within the network. To set up adequate kinetic models, relevant mechanistic information about enzyme properties is required and can be taken from in vitro studies with isolated enzymes or from in vivo investigations using stimulus‐response experiments which provide a lot of kinetic information about the metabolic network. But with increasing number of reaction steps and regulatory interdependencies in the network structure the amount of simulation data dramatically increases and the simulation results from the dynamic models become difficult to analyze and interpret. Demonstrated for an Escherichia coli model of the central carbon metabolism, methods for visualization and animation of simulation data were applied and extended to facilitate model analysis and biological interpretation. The dynamic metabolite pool and metabolic flux changes were visualized simultaneously by a software tool. In addition, a new quantification method for enzyme activation/inhibition was proposed, and this information was implemented in the metabolic visualization.  相似文献   

16.
Metabolic efficiency depends on the balance between supply and demand of metabolites, which is sensitive to environmental and physiological fluctuations, or noise, causing shortages or surpluses in the metabolic pipeline. How cells can reliably optimize biomass production in the presence of metabolic fluctuations is a fundamental question that has not been fully answered. Here we use mathematical models to predict that enzyme saturation creates distinct regimes of cellular growth, including a phase of growth arrest resulting from toxicity of the metabolic process. Noise can drive entry of single cells into growth arrest while a fast-growing majority sustains the population. We confirmed these predictions by measuring the growth dynamics of Escherichia coli utilizing lactose as a sole carbon source. The predicted heterogeneous growth emerged at high lactose concentrations, and was associated with cell death and production of antibiotic-tolerant persister cells. These results suggest how metabolic networks may balance costs and benefits, with important implications for drug tolerance.  相似文献   

17.
This review surveys recent investigations of conformational fluctuations of proteins in solution using NMR techniques. Advances in experimental methods have provided more accurate means of characterizing fast and slow internal motions as well as overall diffusion. The information obtained from NMR dynamics experiments provides insights into specific structural changes or configurational energetics associated with function. A variety of applications illustrate that studies of protein dynamics provide insights into protein-protein interactions, target recognition, ligand binding, and enzyme function.  相似文献   

18.
One fundamental goal of current research is to understand how complex biomolecular networks took the form that we observe today. Cellular metabolism is probably one of the most ancient biological networks and constitutes a good model system for the study of network evolution. While many evolutionary models have been proposed, a substantial body of work suggests metabolic pathways evolve fundamentally by recruitment, in which enzymes are drawn from close or distant regions of the network to perform novel chemistries or use different substrates. Here we review how structural and functional genomics has impacted our knowledge of evolution of modern metabolism and describe some approaches that merge evolutionary and structural genomics with advances in bioinformatics. These include mining the data on structure and function of enzymes for salient patterns of enzyme recruitment. Initial studies suggest modern metabolism originated in enzymes of nucleotide metabolism harboring the P-loop hydrolase fold, probably in pathways linked to the purine metabolic subnetwork. This gateway of recruitment gave rise to pathways related to the synthesis of nucleotides and cofactors for an ancient RNA world. Once the TIM beta/alpha-barrel fold architecture was discovered, it appears metabolic activities were recruited explosively giving rise to subnetworks related to carbohydrate and then amino acid metabolism. Remarkably, recruitment occurred in a layered system reminiscent of Morowitz's prebiotic shells, supporting the notion that modern metabolism represents a palimpsest of ancient metabolic chemistries.  相似文献   

19.
20.
Influence of metabolic network structure and function on enzyme evolution   总被引:4,自引:3,他引:1  

Background  

Most studies of molecular evolution are focused on individual genes and proteins. However, understanding the design principles and evolutionary properties of molecular networks requires a system-wide perspective. In the present work we connect molecular evolution on the gene level with system properties of a cellular metabolic network. In contrast to protein interaction networks, where several previous studies investigated the molecular evolution of proteins, metabolic networks have a relatively well-defined global function. The ability to consider fluxes in a metabolic network allows us to relate the functional role of each enzyme in a network to its rate of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号